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Abstract ــ  In this paper, a neural network approaches for the 

identification of a separately excited DC motor (SEDCM) 

loaded with a centrifugal pump load is applied. The NARX 

(Nonlinear Autoregressive Network with eXogenous Inputs) 

Network using to obtain a good quality model to explain the 

input – output behaviour of a DC motor drive system. The 

motor is assumed a black box. The load and the motor 

parameters are assumed unknown. The NARX recurrent 

neural networks have the potential to capture the dynamics 

of nonlinear dynamic system by presenting a suitable set of 

input/output patterns generated by the dynamic system. The 

backpropagation algorithm was used in order to improve 

performance accuracy to the NARX model. 

Keywords- DC motors, Identification, Neural Networks, 

NARX Model. 

I. INTRODUTION 

In the last decades, there has been a growing interest in 

identification methods based on neural networks [1]. The 

success of dynamic recurrent neural networks as semi 

parametric approximators for modeling highly complex 

systems offers the potential for broadening the industrial 

acceptance of model-based system identification methods 

[2]. Neural networks are universal approximators in that a 

sufficiently   large network can implement any function to 

any desired degree of accuracy. By presenting a network 

with samples from a complex system and training it to 

output subsequent values, the network can be trained to 

approximate the dynamics, which underlie the system. 

The network, once trained, can then be used to generalize 

and predict states that it has not been exposed to [3].                                                    

The use of NN as a modeling tool involves some issues 

such as: NN architecture, the number of neurons and 

layers, the activation functions, the appropriate training 

data set and the suitable learning algorithm [4].                      

fact that the hidden layers and the input layer receive data 

at time t but also at time t-q, where q is the number of 

delayed samples. This makes recurrent networks powerful 

in approximating functions depending on time [5]                            

From the computational point of view, a dynamic neural 

structure that contains feedback may provide more 

computational advantages   than a static neural structure, 

which contains only a feedforward neural structure. In 

general, a small feedback system is equivalent to a large   

and possibly infinite feedforward system [6]. 

                                                     

 

II. MATHEMATICAL MODEL OF SEDCM 

In a SEDCM, the speed can be controlled smoothly 

over a wide range by adjusting either armature voltage or 

field current. Speed control ranging from zero to nominal 

speed can be obtained by armature voltage control, while 

speed control above nominal value can be achieved by 

flux weakening at constant power output. This paper 

focuses on armature voltage speed control at constant flux 

[7][8][9].The dynamics of the SEDCM, Fig. 1, are 

described by the following electrical and mechanical 

differential equations: 

  
   

  
 = -     (t) -   (t)   (t)                     (1) 

J 
     

  
 =     (t)    B (t) -   (t)                (2) 

 

Where: 

     is the motor input voltage. 

    
is the armature  current. 

  is rotor speed. 

      is the load torque. 

    is the  armature resistance. 

       is the armature inductance. 

J is the motor rotational inertia. 

B is the damping constant. 

K is  the torque or EMF constant. 

The parameters values of separately-excited DC motor are 

as follows [10]: 
      = 120 V;    = 9.2 A;     = 20 Nm; n = 1500 rpm 

    = 1.5 Ω;         = 0.2 H; J = 0:02365 kg  ; 

K = 0:67609 Nm   ; B = 0.002387Nms      . 

 

Figure 1. Electrical model of a SEDCM. 

mailto:Abdul2200@yahoo.com
mailto:almb2010@gmail.com
mailto:%20%20osamamasuod233@gmail.com
dahonest
Typewritten Text
Albahit Journal of Applied Sciences ISSN 2708-244X Vol. 1, Issue 1, 2020, 48-53



Using first and second-order finite-backward 

difference approximation for dx/ dt and          

Respectively, the finite difference equation that governs 

the discrete-time dynamics of the SEDCM is given by 

[10]: 

 (k)=K1  (k −1) + K2  (k − 2) + K3TL + K4vA(k)             (3) 

Where:  (k)   (t=k T); T=sampling time and ( k = 

0,  ,  ,….). 

These coeficientes  K1, K2, K3 and K4 are constants 

with values that depend on the sampling time interval 

(ΔT=0.01 sec) and motor parameters as well as given by 

(4) to (7): 

   
                        

                                
              (4) 

   
         

(                             )  
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(6) 

   
            

                               
              

(7) 

The mechanical load is assumed a centrifugal pump 

with a load characteristic given as: 

  =µ  (k-1)                                                   (8) 

Since the motor parameters are available, then 

equation (3) can be used in generating the data set to 

training the NARX neural network. 

III. GENERAL STRUCTURE OF NARX NETWOR 

The architectural layout of a recurrent network takes 

many different forms. In this paper described only the 

input-output recurrent model. 

A. input-output recurrent model 

Fig. 2 shows the architecture of a generic recurrent 

network that follows naturally from a multilayer 

perceptron (BPNN).the model has a single input that is 

applied to a tapped -delay-line memory of q units. It has a 

single output that is fed back to the input via another 

tapped -delay-line memory also of q units. The contents of 

these two tapped -delay-line memories are used to feed the 

input layer of the multilayer perceptron. The presented 

value of the model input is denoted  by u(k),and the 

corresponding value of the model output is denoted by  

y(k+1);that is ,the output is ahead of the input by one time 

unit. Thus, the single vector applied to the input layer of 

the multilayer perceptron consists of a data window made 

up as follows: 

- present and past values of of the input ,namely,  

u(k),u(k-1),….,u(k-q+1),which represent exogenous 

inputs originating from outside the network. 

- Delayed values of the output ,namely, y(k),y(k-1),.,y(k-

q+1), on which the model output y(k+1) is regressed. 

 
Figure 2. Nonlinear autoregressive with exogenous inputs (NARX) model. 

Thus the recurrent network of Fig. 2 is referred to as 

nonlinear autoregressive with exogenous inputs (NARX) 

model [5].The dynamic behavior of the NARX model is 

described by :          

                                                       

The nonlinear mapping F(.) is generally unknown and 

can be approximated  by a standard multilayer perceptron 

(MLP) network. 

B. System Identification using the input-output recurrent 

model 

System identification  is the experimental approach to 

the modeling  of a process or a plant of unknown  

parameters[5].it involves  the following steps: experimental 

planning ,the selection of a model structure , parameter 

estimation ,and model validation .The procedure of  System 

identification  ,as pursued in practice ,is iterative in nature 

in  that we may have to go back and forth between these 

steps until  a satisfactory model is built. 

Suppose next that the unknown plant is only accessible 

through its output .To simplify the presentation ,let the 

system be of a single input , single output kind .Let y(k )  

denote the output  of the system due  to the input u(k) for 

varying  discrete time k . Then, choosing to work with the 

NARX model, the identification model takes the form: 

  ̂       (    )                       

                                       

Where q is the order of the unknown system . At time 

k+1, the q past values of the input and the q past values of 

the output are available .The model output     ̂       

represents an estimate of the actual output y(k+1).The 

estimate  ̂        is subtracted  from y(k+1) to produce 

the error signal. 

e(k+1)= ̂(k+1)-y (k+1)                                 (11) 

 



Where y(k+1) plays the role of desired response . The 

error e(k+1) is used to adjust the synaptic  weights of the 

neural network so as to minimize the error in some 

statistical sense . 

The performance accuracy of the NARX  model  is 

given by the root mean square (RMS) value of the error 

e(k+1).There is an important configuration that is useful in 

training of the NARX network needs explanation. We can 

consider the output of the NARX network to be an 

estimate of the output of some nonlinear dynamic system 

that we are trying to model. In Parallel architecture, the 

output is fed back to the input of the feedforward neural 

network as part of the standard NARX architecture, as 

shown in Fig. 3. Because the true output is available 

during the training of the network, we could create a 

series-parallel architecture [5] in which the true output is 

used instead of feeding back the estimated output, as 

shown in the Fig. 4. This has two advantages. The first is 

that the input to the feedforward network is more accurate. 

The second is that the resulting network has a purely 

feedforward architecture, and static backpropagation can 

be used for training. 

 
Figure 3. Parallel Architecture 

 
Figure 4. Series-Parallel Architecture. 

 

III. SIIMULATION RESULTS 

Using identification procedure described in the section 

(III), we can infer a NARX model of the SED motor drive 

system using the discrete model which described by the 

Equation (3) in generating the data set to training the 

NARX neural network. The MATLAB has been used to 

perform the training and simulation of the system under 

study. 

A. Structure and Training of the NARX model 

The structure of the NARX model of the DC motor is 

as shown in Fig. 5. The model has a single input voltage 

that is applied to a tapped -delay-line memory of 2 units. 

It has a single output speed that is fed back to the input 

via another tapped -delay-line memory also of 2 units. 

The contents of these two tapped -delay-line memories 

are used to feed the input layer of the multilayer 

perceptron. The set of the single vector applied to the input 

layer of the multilayer perceptron consists of a data 

window made up as follows: 

- present and past values of of the input voltage ,namely  

νa(k), νa(k-1),which represent  exogenous inputs 

originating from outside the network. 

- Delayed values of the output speed, namely,  (k), (k-

1),on which the model output  (k+1) is regressed. 

The following are the parameters of the NARX model 

for the optimal set: 

No of sample training data: 5000 

Training algorithm used: Automated Regularization 

(trainbr) 

No of epochs: 500 

Number of inputs: 4 

Number of hidden layer: 1 

Number of hidden layer neurons: 5 

Number of outputs: 1 
 

The structure of the NARX model is used in the two-

layer tansig/purelin network shown in Fig. 5. 
The input-output training data samples are obtained at a 

sampling time ΔT=0.01s to form two time series. Fig. 6 

shows uniformly distributed random amplitude/ frequency 

voltage signal (system excitation signal, u(t) ) applied to 

the DC motor, and the Fig. 7 shows the speed response of 

the discrete model of the SEDCM  y(t). 

 

Figure 5. Structure of the NARX model. 



 
Figure 6. Random voltage signal. 

 
Figure 7. Actual speed response for random input voltage signal at 

sampling time (ΔT=0.01s) 

 

The function newnarxsp is used to create the series-

parallel NARX network .There are two inputs to the 

series-parallel network, the u(t) sequence and the y(t) 

sequence , so Pi is a cell array with two rows, so training 

begins with the third data point. 

Now the network is ready to training. First loaded the 

initial inputs and outputs to the tapped delay lines. Fig. 8 

shows the learning curve for trained NARX network. In 

other words, produces accurate input – output relations. 

We can now simulate the network and plot the 

resulting errors for the series-parallel implementation, the 

result in Fig. 9. 

 

 
Figure 8. Learning curve for trained NARX network (ΔT=0.01s) 

 

 

Figure 9. Errors for only a one-step-ahead prediction (ΔT=0.01s) 

We can see that the errors are very small. However, 

because of the series-parallel configuration, these are 

errors for only a one-step-ahead prediction. A more 

stringent test would be to rearrange the network into the 

original parallel form and then to perform an iterated 

prediction over many time steps. In order for the parallel 

response to be accurate, it is important that the network be 

trained so that the errors in the series-parallel 

configuration are very small.  In the following simulation, 

the parallel operation is demonstrated. There is a toolbox 

function (sp2narx) for converting NARX networks from 

the series-parallel configuration, which is useful for 

training, to the parallel configuration. The parallel 

configuration used to perform an iterated prediction of 

2000 time steps. In this network, we need two initial 

inputs and two initial outputs as initial conditions. 
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Fig. 10 illustrates the iterated prediction. The blue line 

is the actual speed trajectory of the DC motor, and the 

green line is the speed predicted trajectory by the NARX 

neural network. The accuracy between actual speed 

response and predicted  NARX output  is  99.804%  .The 

general behavior of the NARX model is (approximately 

similar) to the behavior of the actual DC motor system. 

 

 

Figure 10. Actual speed response and predicted NARX output 

Fig. 11 show us the error between the actual speed 

trajectory of the DC motor and the speed predicted 

trajectory by the NARX neural network. The root mean 

square (RMS) value of the speed error( rms =5.0685e-

004). 

 

Figure 11. Error between actual speed and predicted NARX output. 

 

 

 

 

 

 

IV. CONCLUSION 

 

In this paper, by using the Neural Network Toolbox 

Software in Matlab, the neural networks are successful to 

achieve the identification of the DC motor drive systems. 

The universal approximation capabilities of the 

backpropagation neural networks (BPNNs) used for 

modeling nonlinear systems. The general behavior of 

NARX neural model is very similar to the behavior of 

separately excited DC motor (SEDCM) with nonlinear 

load characteristics is presented. NARX NN identifier 

model depends upon the sampling time, taking into 

consideration the values of sampling time that ensures 

more accurate representation of the actual speed trajectory 

the simulation results showed that NARX neural network, 

with five neurons in hidden layer and reasonable sampling 

time, can be effective in designing robust identifiers of 

SEDCM with excellent performances. 
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