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Abstract—Enhancement of signal is highly essential to 

either remove or reduce the noise from it. More often we 

meet these difficulties due to nonlinearities in signal and 

due to its nonstationary nature. Fourier transform is a 

popular and efficient tool for this purpose along with 

wavelet transform. It may not work properly to its 

limitations, for the nonstationary type of signal it fails to 

prove its efficiency. Also it cannot offer the temporal and 

spatial information clearly. The empirical mode 

decomposition EMD of signal is an adaptive method and a 

powerful substitution to the Fourier and wavelet 

transform. This technique can be used for an effective way 

of analysis of the instantaneous frequency of signals. 

Though EMD has used by many researchers, it cannot be 

most popular due to its demerits in terms accurate 

mathematical model. Therefore the birth of variational 

mode decomposition VMD occurred as an alternative of 

EMD and can overcome the demerits of EMD. VMD 

decomposes the signal into discrete number of sub-signals 

(modes), where each mode has limited bandwidth in 

spectral domain. But the problem of this technique is how 

we can define the optimal number of modes where too 

large number of modes will lead to redundant VMD 

information, while too small number of modes will lead to 

mode mixing in the VMD results. In this paper we propose 

a combination of VMD and a correlation coefficients (CCs) 

to optimize the number of modes based on estimation of 

useful modes to reconstruct the original signal and 

determination of noisy modes to be removed. The 

robustness of VMD is evaluated on simulated signals 

under different parameters and the performance of the 

method for signal denoising is evaluated in terms of signal- 

to- noise ratio (SNR).  

 

Index Terms—Variational mode decomposition, 

Empirical mode decomposition, correlation coefficients.    

I. INTRODUCTION 

Analysis of signal is a vital part for industry, research and 

academia. It is the great challenge for researchers in current 

decade. Different types of analysis can be performed based on 

users' requirement. Signal estimation as well as estimation of 

its parameter is able to identify and confirm the model to be 

used, where noise is mostly contaminated with it. For 

enhancement of signal, it is very essential to either remove or 

 
 

reduce the noise from it. More often we encounter these 

difficulties due to nonlinearities in signal and due to its 

nonstationary nature. For such purpose spectral analysis is an 

alternative. But accuracy level has to be taken care. Fourier 

transform is a popular and efficient tool for this purpose along 

with wavelet transform. Sometimes these methods are 

effective for specific cares and specific signals. Consideration 

of Fourier transform may not work properly to its limitations, 

for the nonstationary type of signal it fails to prove its 

efficiency. Also it cannot offer the temporal and spatial 

information clearly. Though it can be solved using wavelet 

transform, still it has certain demerits. The empirical mode 

decomposition EMD of signal is an adaptive method and a 

powerful substitution to the Fourier and wavelet transform. 

EMD technique has been suggested for nonlinear and 

nonstationary signals [1]. After decomposition of the signals, 

it can be reconstructed as the sum of the components along 

with the amplitude and frequencies parameters. It can be said 

that the multi resolution method to perform space-spatial 

frequency decomposition as time-frequency analysis. This 

technique can be used for an effective way of analysis of the 

instantaneous frequency of signals. Though EMD has used by 

many researchers, it cannot be most popular due to its 

demerits in terms accurate mathematical model. Also choice 

of interpolation, sensitivity to noise and sampling are the 

factors of demerits. Therefore the birth of variational mode 

decomposition VMD occurred as an alternative of EMD and 

can overcome the demerits of EMD [2-4]. Its basic principle is 

same as EMD, but the centre frequency of the mode has to be 

found so that the bandlimited modes can represent the original 

signal. VMD used for different applications like classification 

and detection [5-7]. Variational Mode Decomposition VMD 

decomposes the signal into Z discrete number of subsignals 

(modes), where each mode has limited bandwidth in spectral 

domain. Thus, each mode Z is required to be mostly compact 

around a centre pulsation ωz determined along with the 

decomposition. One of the disadvantages of VMD is how to 

determine the number of intrinsic mode functions IMFs where 

the number of modes Z must be predefined before starting the 

VMD calculation. Therefore, it is very necessary to optimize 

the Z value to ensure the accuracy and efficient computation 

of the VMD. In this paper we propose a combination of VMD 

and correlation coefficients (CCs) to define an appropriate 

value of Z. By this combination we can define the necessary 

modes IMFs to reconstruct the original signal and define the 

noisy modes IMFs to be removed.  
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II. OPTIMIZATION OF THE NUMBER OF MODES  

The number of modes Z must be predefined prior the VMD 

computation starts. Theoretically, the value of Z depends on 

how many components are present in the signal. When the 

value of Z is improperly realized, the unneeded computations 

are increased, and at the same time the accuracy of signal 

separation may be affected [2]. Redundancy VMD 

information is caused when too many modes are selected and 

mode mixing results in VMD will appear for too few modes. 

Therefore, it is very important to find the optimal value of Z to 

get high accuracy and   efficient computation of the VMD. 

The question of how to find the optimal value of Z has not yet 

been answered, but it remains to solve. The determination of Z 

depends on the experience of the researchers. In this paper, we 

assume that the number of mode functions (Z) is equal to the 

number of modes (IMFs) generated by empirical mode 

decomposition [1], followed by the decomposition method 

(VMD) jointed with correlated coefficients (CCs). Firstly, the 

simulation signal is decomposed into discrete number of mode 

functions equal to the same number of mode functions that 

decomposed by EMD method; the correlation coefficients 

between the input simulation signal and the generated intrinsic 

mode functions are computed and based on selected threshold 

value, we determine the useful CCs and discard the noisy 

mode functions (IMFs).  

III. CORRELATION COEFFICIENTS 

The relationship between the two variables can be measured 

by correlation coefficients (CCs). The CCs are values ranging 

from (-1) to (1). If the relationship between the variables is 

completely positive linear, CCs is 1, but if the relationship is 

negatively related, CCs is -1. The correlation coefficient is 

zero when the relationship between the variables is not linear. 

There are two kinds of correlation coefficients; one of them is 

Spearman's rank correlation coefficient, which is depends on 

the rank association between the amounts. The second 

technique is the most popular technique for measuring the 

relationship between two quantities which is called Pearson's 

correlation coefficient. Pearson's correlation coefficient (r), 

sometimes referred to as the correlation coefficient or r, is the 

most popular technique used to optimize the relationship 

between two quantities in which this relationship is positively 

correlated, negatively correlated or nonlinear relationship (not 

a straight line). The (r) values of the two elements are 

frequently reported in research articles and journals, to 

summarize the relationship between two elements.  The value 

(r) will be positive and much greater than zero, when the two 

quantities have a linear straight line relationship in the positive 

direction. The value (r) is less than zero, when the relationship 

is straight line in negative. When the values of (r) are very 

close to zero then the relationship between the two quantities 

is small. The range of values (r) is from -1 to 1. To calculate 

Pearson's correlation coefficient (r), assumed that we have two 

quantities u and v. 
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In order to find the correlation coefficient of two quantities, 

we usually need three additions. The sum squares of the 

quantity (u), sum squares of the quantity (v) and the cross 

product sum of (uv) 

Let the mean of u be 
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 And the mean of v  
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The sum squares of quantity (u) is 
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The sum squares of quantity (v) is 
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The cross-products (SSuv) sum 
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The relationship strength between the variables is estimated by 

the magnitude of the correlation coefficient:  

                                     0 < |r| < .3 weak correlation 

                                     .3 < |r| < .7 moderate correlation 

                                     |r| > 0.7 strong correlation 

IV. SIMULATIONS AND RESULTS 

The simulation signal x(t) is composed of three different 

frequency and amplitude cosine signals. A 0.5 times standard 

Gaussian white noise n(t) is added to get the noisy signal f(t). 

The simulation signals are as follows 

x(t) = 0.8cos(2πf1t) +0.6cos(2πf2t) +0.3cos(2πf3t)           (7) 

n(t) = 0.5rand n(t)                                                               (8) 

f(t) = x(t) + n(t)                                                                   (9) 

where f1 = 10, f2 = 50 and f3 = 100 represent the three 

frequencies of clear signal x(t); and f(t) is the noisy signal 

containing both x(t) and n(t). The time-domain waveform for 

clear signal and noisy signal is shown in Figure 1.  

 

Fig. 1.  (a) The clear signal; (b) The noisy signal.  

 

VMD is used to remove or reduce the noise from the noisy 

signal corrupted with WGN. The noisy signal is first broken 

down into the number of modes Z=9. The number of modes in 

VMD is selected to be equal to the number of modes by 

empirical mode decomposition (EMD) as a default [1]. This 

number of modes Z=9 is used on VMD as an initial value of 

Z. The decomposition modes of VMD for a noisy signal are 

presented in Figure 2. Optimization of these modes is needed 

to avoid the impact of over-binning or under-binning on the 

VMD denoising method. A simple criterion is designed based 

on a combination of VMD and correlation coefficient (CCs), 

to minimize the number of modes Z. VMD algorithm is 
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presented to decompose the noisy signal into a nine band 

limited modes then, a CCs rule is designed to identify the 

effective components from these modes.  

 
Fig. 2.  The IMFs of noisy signal. 

 

After simulation signal is decomposed into intrinsic mode 

functions (IMFs), then the IMFs are defined as a noise mode 

functions and useful mode functions, respectively. The 

distinction between noise mode functions (IMFs) and useful 

mode functions (IMFs) can be made according to the threshold 

of the (CCs). The formula of correlation coefficient (CCs), as 

statistical parameter is shown as following: 
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                                     (10)                                                 

Where   is the noisy simulation signal and      is mode 

components of VMD. The objective of this simulation is to 

optimize the number of decomposition modes Z, by CCs and 

measure the performance of different input SNRs. The CCs 

are computed for each mode of the decomposition modes (in 

Figure 2) with respect to the noisy signal and the CCs results 

are recorded in Table 1. According to the selected threshold 

value (0.24), only three modes (IMF1, IMF2 and IMF3) were 

strong enough to be defined as useful modes and the other 6 

modes (IMF4 – IMF9) were very weak which classified as 

noisy modes. The three effective modes are added together to 

get the reconstructed signal with SNR =15dB instead of 3dB 

for the noisy signal. The remains 6 modes are discarded as 

noisy components. The denoised signal is shown in Figure 3.  

To measure the performance of variational mode 

decomposition (VMD) denoising algorithm, simulation 

experiments have been carried out in this paper, with different 

input SNRs in the range from −10 dB to 5 dB. The number of 

IMFs on VMD is set to Z=3, which is equal to the number of 

modes IMFs that optimized by CCs and the band width 

control parameter of VMD is       . As seen in Figure 3, 

the reconstructed signal of VMD is improved after we make 

denoising, where the input SNRi =3 dB and the resultant 

SNRo=15.6 dB. The correlation coefficients (CCs) between 

the mode functions (IMFs) and the input noisy signal are 

recorded in Table 1, according to selected threshold which is 

0.24. We get three useful IMFs by VMD (IMF1, IMF2, and 

IMF3).  

 
TABLE I. THE CCS BETWEEN THE NOISY SIGNAL AND IMFS BY VMD 

 

IMF1 IMF2 IMF3 IMF4 IMF 5 IMF6 IMF7 I M F 8 

0 .6 2 0 .4 8 0 .2 5 0.152 0.147 0.156 0.165 0 . 1 7 5 

 

 

 
Fig. 3.  Time-domain denoising signal (15.6dB). 

 

The relationship between the two variables can be measured 

by correlation coefficients (CCs). The CCs are values ranging 

from (-1) to (1). If the relationship between the variables is 

completely positive linear, CCs is 1, but if the relationship is 

negatively related, CCs is -1. 

To measure the achievement of VMD with respect to 

various input (SNRs) ranging from -10 dB to 5 dB, the 

variance (σ) is changed into different values (0.4 - 2.4). The 

output SNRs and RMSE results are recorded in Table 2. 

Figure 4 illustrates the plots of input SNRs versus output 

SNRs for simulation signal. The relation between input SNRi 

and output SNRo is proportional, when the input SNRi 

increases the output SNRo increases too and RMSE decreases. 

 
TABLE II. DENOISING RESULTS OF NOISY SIGNAL WITH 

DIFFERENT SNRS 

  2.4 1.7 1.3 1.1 0.85 0.65 0.5 
0.4 

SNRi -10.4 -7. 3 -4.9 -3.1 -1.1 1.17 2.8 
5.2 

SNRo -0.68 2.62 5.2 7.7 10.7 13.1 14.6 
18 

RMSE 0.80 0.51 0.37 0.31 0.20 0.15 0.12 
0.1 
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Fig. 4.  Denoising results of noisy signal with different SNRs. 

V. CONCLUSION 

VMD decomposes the signal into discrete number of sub-

signals (modes), where each mode has limited bandwidth in 

spectral domain. But the problem of this technique is how we 

can define the optimal number of modes. For under-

segmentation (small number of modes Z), there will be 

sharing between the neighbouring modes for small band width 

control parameter ( ), or mostly discarded modes for big band 

width control parameter (  ). On the other hand, when over-

segmentation (large Z), and small band width control 

parameter ( ), one or several modes get noisy and broad 

spectral density. For large value of (  ), the center frequency 

of two or more modes get matched (mode duplication) and 

some of important parts of signal spectrum shared with others. 

In this paper we propose a combination of VMD and a 

correlation coefficients to minimize the number of modes (Z). 

We used a combination of VMD and correlation coefficient 

(CCs) to decompose the simulation signals into intrinsic mode 

functions (IMFs) and identify noise IMFs, respectively; 

According to the threshold of the CCs, noise IMFs and useful 

IMFs can be distinguished effectively. Then, the denoising can 

be realized by reconstructing useful IMFs. The performance of 

a VMD approach is measured over the simulation signal at 

different noise conditions ranging from -10 dB to 5 dB and the 

relationship between the input signal SNRs and the output 

signal SNRs is proportional, if the input SNR increases the 

output SNR increases and the RMSE values decreases.  
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