
Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

17

Enhancing the WinCASE Tool

Alhadi Ali Klaib
Department of Computer Science, Faculty of Information Technology, Elmergib University, Libya

 alhadi.klaib@elmergib.edu.ly

Abstract— Computer Aided Software Engineering (CASE)

tools are very important for software engineering

professionals. These tools offer great support to software

developers. WinCASE tool is one of these tools. it has

been improved over a period of time. Moreover, dataflow

Algebra is a methodology that used to describe a formal

specification of a system. The WinCASE and Dataflow

Algebra were both invented in the Department of

Computer Science at Sheffield University. Unified

Modeling Language is a standard language for developing

software systems. The Class diagram is one of the UML

diagrams which demonstrates the system objects. This

paper aims to enhance the WinCASE framework by

integrating the Class diagram in UML notation within

this framework. Therefore, this paper studied the

previous work and the background of the WinCASE

framework, class diagram, and Dataflow Algebra. As a

result, the requirements for integrating the Class

Diagram within the WinCASE framework were

identified. The current WinCASE structure was analysed.

Furthermore, the research method for this improvement

was designed and developed.

Keywords — CASE tools, Software Engineering, Software

Tools, UML.

I. INTRODUCTION

Computer Aided Software Engineering (CASE) tools are

very beneficial as they provide reliability for software

engineering. Thus, CASE tools have been developed rapidly.

They also offer easy and flexible approaches for software

developers to construct systems. Historically, these tools

appeared in the 1980s. However, they were developed

rapidly. Furthermore, these tools offer many advantages, such

as saving time, effort and money, as well as offering high

reliability [1-4]. WinCASE is one of the CASE tools.

Initially, it was invented in the Computer Science Department

at the University of Sheffield. Essentially, it was intended to

be a configurable CASE tool for experimental purposes [2,

5]. It has been further developed several times over a while.

First of all, it was adapted for use of Parallel Communicating

Sequential Code (PCSC) methodology. Subsequently,

DataFlow Algebra (DFA) methodology was incorporated

within WinCASE. Lastly, Sequence Diagrams in UML

notation were implemented within WinCASE[3, 6].

DFA is a methodology used to describe the formal

specifications of a system. This methodology was

incorporated into WinCASE. Subsequently,the specifications

of DFA can be created automatically with this tool.

In addition, UML is a standard language of graphical

notations.It is used for building and documenting the artefacts

of huge systems, particularly software systems[3, 4]. Class

diagrams in UML notation demonstrate the types of system

objects and different types of static relationships that exist

between these objects. Furthermore, class diagrams illustrate

the properties of classes, and the restrictions that apply to the

approach used to link objects [6-15]. Thus, the main objective

of this paper is to develop the current DataFlow Algebra

(DFA) methodology within the WinCASE framework by

integrating the class diagram (CDs) in UML notation within

this framework [1, 3, 4, 16-18]. Therefore, a review of the

WinCASE framework will be carried out in order to ensure

the feasibility of extending and adapting the existing system

and repository to include the class diagram. In more details,

the WinCASE tool needs to be enhanced to allow the new

diagram to work effectively.To summaries, the remainder of

this paper is organized as follows; the second section

discusses the background and previous work of this research.

Subsequently, the third section illustrates the identification of

the requirements of this research. Section four discusses the

analysis of the current WinCASE. Section five demonstrates

the proposed approach. Section six discusses the conclusion

of this research.

II. BACKGROUND AND PREVIOUS WORK

This section begins with a further detailed introduction to the

CASE tools. WinCASE tool developments and history.

Subsequently, DFA will be covered. Finally, this section

explains the class diagram in the UML notation and its

properties.

A. CASE Tools

Since the early days of coding software, there has been an

understanding of the need for automated tools to assist

software developers. Essentially, the focus was on the

programming support tools such as compilers, macro

processor and translators. Over time, as computers became

more powerful, and the software that ran on them became

more sophisticated, various support tools started to develop

considerably. The software engineering stages, such as

design, implementation, delivery and maintenance, are

complicated and expensive. Therefore, the development and

management of these stages need to be automated. As a

result, the CASE tools field was suggested, and subsequently,

a large number of CASE products have been produced

commercially providing a wide range of functionality

[1, 9, 19-21].

mailto:alhadi.klaib@elmergib.edu.ly

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

18

B. WinCASE Tool

Initially, the WinCASE project was started in the early

1990s by Dr. Manson in the Department of Computer

Science at the University of Sheffield. Essentially, the

WinCASE tool was aimed to be a fully configurable CASE

tool for experimental purposes. As its name may suggest, it

was adapted very much towards providing a system that can

be run under a particular proprietary operating system.

Basically, the WinCASE system provides the function of

constructing diagrams from objects and abiding rules. The

methodology in the WinCASE is a set of diagrams that are

visual components. Properties of methodology objects are

defined as separate components. This feature gives the

WinCASE a great deal of flexibility since these properties

can be easily customised by a methodology engineer [3, 4].

The implementation stage of the DFA methodology within

WinCASE framework was undertaken by Wyles. The

repository of the WinCASE was expanded in order to

integrate the DataFlow Algebra. Thus, an editor for data

flow diagrams was also provided. Aida Manan implemented

a state chart diagram within the WinCASE framework in

2005. Consequently, Di Liu studied the integration of

WinCASE tool into Eclipse. Joseph Czucha implemented

the development of diagram editors within the WinCASE

framework [2-4, 9].

C. Dataflow Algebra

DFA is a methodology that is used to describe a formal

specification of a system. The first idea of DFA was to

construct a formal specification using a Data Flow Diagram

(DFD). In other words, DFA is used to illustrate a system in

terms of the data flows within it. The development of DFA

was planned to add to the process of integration methods.

These integration methods are formal and diagrammatic [2,

3, 22, 23].

D. UML Notation

UML is a standard language for specifying, visualizing,

constructing, and documenting the artefacts of software

systems, as well as for business modeling and other non-

software systems. UML is commonly used and accepted for

describing and constructing software systems. Basically,

UML was developed from object-oriented graphical

modeling languages which became widespread in the late

1980s and early 1990s. Since the complexity of software

systems increased dramatically, visualizing and modeling

these systems became an important requirement, and as a

result, the UML is a broadly accepted solution for this

requirement. Moreover, UML is a significant approach to

developing object-oriented software. Mainly, the UML

adopted graphical notations to explain the design of

software projects [7, 8, 19].

E. Class Diagram in UML Notation

The class diagram is one of the UML classes and illustrates

the system objects, as well as the static relationships that may

exist between them. Furthermore, the class diagram illustrates

the properties and operations of class objects, as well as the

restrictions that apply to the connection [3, 7, 8]. Figure1

shows a detailed class diagram. The objects of the class

diagram are the following:

1) Class Diagram

The boxes within the diagram represent classes. Each class is

divided into three sections. The upper section is for the class

name. The middle section is for the class attributes. The

lower section is for the class operation [8, 19].

2) Properties

Essentially, each property is a single concept, which

represents a class feature. The properties are represented in

two different approaches, namely attributes and

associations[7, 8].

3) Attributes

Attributes describe a property in a text form in the class box

[7, 8, 19]

4) Associations

simply, the association is the other approach to notating a

property. About the same information that appears in the

attributes can be shown in the association. Fundamentally,

the association is a firm line that connects two classes that

start from the source class and go to the target one.

Association can be either unidirectional or bidirectional [7, 8,

19]. Figure 2, illustrates these two kinds of associations.

Fig. 1. A class diagram

Fig. 2. Two kinds of associations

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

19

The association name appears around the middle of its

association. The multiplicities appear at the beginning and the

end of the association. More detail about the multiplicities is

provided below. The direction of association is an arrow that

fits somewhere near the association name [2, 19]. Figure 3

shows the association name.

Fig. 3. Properties of an association

5) Multiplicity

The multiplicity of a property is the number of objects that

might fill the property. There are some common

multiplicities as follows:

 (1): which means (exactly one). For example, an order

must have only one customer.

 (*): which means (zero or more). For instance, a

customer does not have to place an order, however, this

customer can order an unlimited number of orders.

 (0...1): which means zero or one. For example, a

corporate customer might or might not have a single

representative.

 (m..n): which means numerically specified. Thus, the

number of multiplicities can be customised by the user

[7, 8]. Figure 4 shows these common multiplicities.

Fig. 4. Some common kinds of multiplicity

6) Operations

they are the actions that a class can undertake. The full UML

syntax for operations is the following:

Visibility name (parameter-list) : return-type {property

string}

 The name is a string.

 The parameter-list is the list of parameters for the

operation.

 The return-string points out properties values that apply

to the given operation[7].

To conclude, this section reviewed the relevant background

to this paper.

III. IDENTIFICATION OF THE REQUIREMENTS

This section is concerned with the identification of the

requirements for integrating the class diagram in UML

notation within the WinCASE framework. Moreover, the

methodology and design of the class diagram are also

discussed and illustrated in this section. Basically, the class

box and the associations are the fundamental components of

the class diagram. Their properties are also significant to

make these components expressive and complete. The most

important properties that need to be considered are as

follows:

1) The Class Object Properties

The class name is the most important property and should to

be given the first priority. The second priority is the attributes

of the class object. Several of these attributes should be

available for each class object. The lower priority is the

operations.

2) The Association Object Properties

The association name and multiplicities are significant

properties. Thus, these two properties should be given

priority. The direction arrow is an important feature to show

the flow of data. Finally, headarrows are also important

properties. Therefore, the last two properties should be given

the second priority. Consequently, by developing these

components and their properties, the user should be able to

draw large diagrams.

A. Functionality

A diagram editor within the WinCASE framework for

drawing class diagram objects and also make them movable

around the window need to be developed. In addition, the

function of editing objects properties needs to be available.

Manipulation of objects and diagrams also needs to be

available, such as naming, renaming and saving diagrams.

The look and feel of the class diagram editor need to keep

pace with the existing ones. Thus, the class diagram editor

should provide similar forms and icons to the previous

editors. It should also be possible to adapt WinCASE to these

features since some of them are already available in the

current diagrams.

B. Connectivity

The class box to class box connection is the only connection

that has to be carried out by associations. The connection

detail also needs to be provided.

C. Methodology Objects

the methodology objects that need to be implemented are the

following:

1) Class Box

The class object in the class diagram is represented by a box

rectangle. This box is divided into three sections. The

compulsory property is the class name, whereas the other

properties are optional. Therefore, the class box can include

the object name only. However, it can include the object

name as well as a number of attributes and operations.

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

20

2) Association

The association object represents a connection between class

objects. This association will be represented by a line. The

properties of an association need to be developed as well.

These properties are the association name, multiplicities,

direction arrow of the data flow, and arrowheads. These

properties also need to be implemented and each of them

needs to be fit in the applicable location.

D. The Basic Class Diagram

The class object in the class diagram will be represented by a

rectangle as mentioned above. This rectangle will be divided

into three interior sections. The name of the class is placed

into the higher section. The attributes of the class occupy the

middle section, whereas the operations occupy the lower

section. Figure 5 shows a simple example of a class diagram.

Fig. 5. A class diagram

E. Associations

The association is another class diagram object and it is an

important requirement of this research. An association has

several properties which are association name,

multiplicities, arrow heads, and a direction arrow. A

detailed explanation is given below about the appearance of

these properties.

1) The Class Object Properties

The multiplicity is the number of objects that might fill the

property. There are some common multiplicities Such as 1

(exactly one), 0...1 (zero or one), * (many) and so on and so

forth. Figure 6 illustrates these common multiplicities.

Fig. 6. Some common kinds of multiplicities

2) The Association Name

The association usually has a name. This name provides

understanding and avoids ambiguity. The name fits around

the middle of its association. Therefore, the association

name will be implemented in this research. Figure 7 shows

a simple example of an association.

Fig. 7. An association

3) Bidirectional Association

This is a common type of association. A bidirectional

association is a couple of head arrows that are connected

together as inverses as shown in figure 7.

4) Direction of Association

This property shows the direction of the data flow between

the classes.

F. Properties of Class Object

The properties of a class object are namely the class name,

attributes and operations. Further details as follows:

1) Class Name

The class name fits in the higher section of the class box.

Figure 8 shows an example of attributes.

Fig. 8. An example of attributes

2) Attributes of Classes

A class attribute is a text that fits into the class box itself.

There is no limited number of attributes of a class. However,

they are usually a small number. Thus, it would be reasonable

to set them up to five attributes for a class.

3) Operations of Classes

Operations of a class are called methods. These operations

are the actions that a class performs. These operations are

located in the bottom section of the class. Since there is no

limited number of class operations, it would be sensible to set

them up to five operations in a class.

G. Object Repository

The objects that need to be stored in the repository are shown

in figure 9. The connection points are recognised by

WinCASE when the user moves the cursor around.

Fig. 9. Object representation of the repository

To conclude, the basic requirements of a class diagram have

been identified and established. These requirements can set

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

21

up the basic objects of the class diagram. The following

section discusses the design of the editor and the diagrams.

IV. ANALYSIS OF CURRENT WINCASE STRUCTURE

Oxspring, Wyles and Denton stated that the WinCASE

system was designed in a quite sophisticated way in order to

allow high flexibility. Therefore, further symbols can be

added to this system with minimum additions of

representations. Moreover, WinCASE has a well-organised

directory structure with the methodologies and associated

elements in particular locations. This design provides

WinCASE with the advantage that adding and using existing

elements is easy to work [2-4]. Figure 10 illustrates the

current WinCASE structure. More detail as follows:

A. The Key Functions of WinCASE

The current functions within the WinCASE tool are the

following:

1) File Manipulations

WinCASE can load and open a project file. This file can be

saved and closed once it is modified. Diagrams can also be

saved in this file as well.

2) Diagram Objects Manipulations

There are several functions within diagrams themselves in the

DFA methodology which are the following:

 Creating a new object of a diagram.

 Provision of a Diagram Name: a diagram is given a

name to be saved and restored by this name.

 Renaming an Object: having given a name for a file, it

can be renamed again.

 Moving an Object: it is a good advantage to move

objects of diagrams around the specified window. This

gives flexibility to the WinCASE framework as

diagrams can be changed and expanded very easily.

 Deletion of Objects: this function allows objects to be

deleted. It is also useful for making changes in

diagrams.

B. WinCASE Files Structure

As can be seen in figure 10, the file structure has three main

packages which are the following:

1) CoreSystem Package

As its name suggests, this is the main part of the WinCASE

system. Basically, it controls the whole application and

supplies its functionality. Structurally, it includes a number of

classes and two packages in itself. These packages include

the main classes for defining all symbols and properties of

objects that are used in this application [2, 3].

2) Interfaces Package

Java provides the inheritance technique, which allows a great

deal of generalisation among similar classes. For instance, as

all methodology objects in WinCASE are similar, this lets

them extend the MethodologyObject class. Thus, all these

objects will implement the same interface which is the

IMethodologyObject class. In other words, the WinCASE

system utilises the interfaces to control methodology objects

that have the same base functionality [2, 3].

3) Methodologies Package

This package defines the details of any implemented

methodology. Currently, there is only one methodology,

which is DFA. This methodology has a package called DFA

which contains two sub-packages, namely Diagrams and

MethodologyObjects. There are also a number of defining

classes for each diagram in the DFA package. The Diagrams

package has two sub packages, DFA and SD packages. Every

one of them holds a class that defines its diagram detail. The

MethodologyObjects package contains a number of sub-

packages for all objects that are defined by these diagrams

[2, 3].

Fig. 10. The WinCASE files structure

C. The Repository of WinCASE

This section provides an explanation of how the repository of

WinCASE stores information as this function is vital within

the WinCASE system. Essentially, there is a unique identifier

attached to every object in all implementations of a

repository. Therefore, the repository can guarantee that only

one copy of each object is saved. Other objects can store a

reference to this object, from which the original object can be

found. This is the main idea of dealing with objects such as

saving and retrieving them. It is also the way of

distinguishing objects from each other. The repository

provides the IRepositoryID interface which is used to allow

those references to existing. This interface class can be

considered as a tag attached to any saved object and the

content of this object depends on the implementation. This

allows information to be saved. Therefore, the IRepositoryID

class interface is used by the repository implementation to fill

in the details. Notice that this interface does not specify any

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

22

methods as none of them will be needed in some cases [3].

Since every representation must be linked to a methodology

object, this representation will have to find out that object’s

id tag. The object has to be determined from the id when a

user edits the properties of an object. This can be carried out

by the “getMethodologyObject” method. There are other

methods that enable the tagging and resolving of the

diagrams. The Remove method removes any object or

diagram that is not needed any more in the repository.

Similarly, the Store method is responsible for ensuring that

the stored version of all data which currently loaded is up-to-

date. The methods getDiagram and getMethodologyObject

are both responsible for retrieving a list of all diagrams and

objects in the repository [3]. The class diagram with all these

methods is shown in figure 11.

Fig. 11. Repository Design

D. Diagrams

There are two types of diagrams that have been implemented

in the DFA methodology within WinCASE, which are the

Dataflow Diagram and the Sequence Diagram. These two

kinds of diagrams are defined by the DFAMethodology class.

This class is responsible for defining all kinds of DFA

diagrams. Notice that diagrams are defined in a project file

just at the creation time of this file. That is to say, it is not

possible to draw or add any kind of diagram in a project if

this diagram was not defined in this project. Essentially, each

diagram has its own functionality which is defined by a base

diagram class, which is known as Diagram and exists in the

CoreSystem package. Every methodology diagram extends

this class to allow for its own functionality and properties.

This basic diagram class supplies all the fundamental

elements of a diagram, such as representation and object

connection data structure, the function to add objects to

diagrams, a paint function, and finally the basics of popup

menus. The methodology diagram classes, which are

DFADiagram and SDDiagram, extend the Diagram class to

give more specific functions and details. They also establish

their objects and keep them ready to use in the diagram, as

well as establishing connection information. As far as

consistency is concerned, this connection information is very

significant since it plays the role of a consistency checker.

Thus, any undefined connection is not allowed. In fact, there

is no particular code for consistency checks within

WinCASE. Consistency checks completely depend on the

code of the Diagram class. The main consistency check is the

allowed connections into the Diagram class which can be

created [3].

E. Methodology Objects

There are a number of methodology objects in the current

WinCASE. Most of them belong to the DFA diagram since

they were defined in the DFDDiagram class. Another

methodology object belongs to the SD diagram as it was

defined in the SDDiagram class. The rest of these objects

were not defined at all [2]. The methodology objects that

were defined in the DFD diagram are the following:

1) Process Object

Which is represented by the following :

DFA.MethodologyObjects.Process

2) External object

Which is represented by the following:

DFA.MethodologyObjects.External

3) Datastore object

Which is represented by the following:

DFA.MethodologyObjects.Datastore

4) Dataflow object

Which is represented by the following:

DFA.MethodologyObjects.Dataflow

Each methodology has two properties, which are the object

name and annotation. The only methodology object that is

defined in the SD diagram is the Start object: this is

represented by the following:
DFA.MethodologyObjects.Start

This explanation is related to the structure of diagram

packages. Basically, each methodology object extends the

MethodologyObject class which exists in the CoreSystem

package, and also implements its interface which is

IMethodologyObject in the Interfaces package. The elements

of an object are saved in the package of this object itself. This

package is located on the following site:

DFA.MethodologyObjects. Figure 10 shows the whole

structure of the WinCASE framework. Within each object

package there are two sub-packages and three other classes.

First of all, to start with the classes, they principally define

their object. Consider an arbitrary object called Entity. Thus,

the first class would be called EntityMethodologyObject. This

class is the main one, and it defines the object properties and

any other characteristics it has. The other classes would be

the EntityCustomiser and EntityMethodologyObjectBeanInfo.

They allow the object to be changed. The EntityCustomiser

class sets and gets their object properties.

Secondly, as far as the Properties and Representations

packages as concerned, they simply contain additional detail

about their object. The Properties package includes classes

that set and get properties values into the repository, These

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

23

values can be changed by the user during the diagram

creation and editing. The Representations package is more

sophisticated since it has sub packages within itself. It

contains classes for defining each possible representation.

In general, object properties and representation symbols all

extend base classes that are defined in the following

packages:

- CoreSystem.Properties and

- CoreSystem.Symbols

F. Interfaces

The IMethodology class in the CoreSystem package is a

vital class, since it takes the responsibility for managing the

functionality of the IMethodologyobject and IDiagram

classes in this methodology. Essentially,

IMethodologyObject holds a number of properties and

representations and manages what is allowed. Some other

classes such as IDiagram, IRepresentation play similar

roles to the IMethodologyObject. To summarise, all these

classes control the main mechanism of the WinCASE

tool[3].

The WinCASE data model uses a number of linked

interfaces, and as interfaces do not hold attributes, so that

provides this tool with flexibility as mentioned above.

Figure 12 illustrates the data model within WinCASE. It is

obvious that the IMethodology class is the main class as it

controls the types of diagrams and adds any new class. This

class also controls the drawing of a new diagram, as well as

naming the diagram. The class IDiagram is also a

significant class, since it manages the representations and

connections within a diagram. This class also manages the

permitted connections. The IRepresentation class runs a

number of important functions. It manages the

representations for methodology objects and also

representations of connections among these objects. The

IMethodologyObject manages the functions associated with

an object, such as editing properties and sets up the

representation of that object. The IProperty class performs

similar functions as it manages the value of properties and

other functions. Lastly, the class ISymbol is responsible for

managing the features of an object, such as the arrows and

names. The rest of the WinCASE structure is constructed

around this data model. In the main window where

diagrams are created, they could be loaded within child

windows, which hold a palette of representations that might

be created in this diagram[3].

Fig. 12. The Data Model within WinCASE

V. PROPOSED APPROACH

This section explains the analysis of needed developments of

the current WinCASE tool structure. Subsequently, the

second part of this section discusses the implementation of

the class diagram within the WinCASE tool.

A. Analysis of Required Developments

In General, the similarity of the basic elements between this

research and previous projects gives great advantages to this

research. The key advantage is consistency, as mentioned

before that WinCASE has been designed in a sophisticated

and consistent way. Thus, the current WinCASE structure

needs to be studied carefully in order to make this project

keep pace with the same consistency. The other advantage of

consistency is saving time and effort for the development of

this research. An understanding of this code and the

WinCASE structure is important in order to build an effective

project structure. Figure 13 illustrates the main components

of a class diagram that need to be implemented. Essentially,

the class diagram is divided into two basic components,

which are a class box and an association. The class box

includes three sub components, which are the class name,

attributes and operations. The association contains four

components within itself, namely an association name, a

multiplicity, arrow heads and a direction arrow.

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

24

Fig. 13. The components of the class diagram structure

B. System Design

The class diagram system within WinCASE has to be

designed in a similar way to the previous diagrams in order to

keep pace and integrate smoothly with the current WinCASE

framework. Figure 14 represents the integration of the class

diagram with the WinCASE framework. Notice that creating

and opening a project file are already existing functions. The

project file contains all the kinds of diagrams that are defined

in this methodology. The main functions that will be

implemented on the class diagram are renaming, saving and

closing the diagram, which are the same as the functions in

the previous diagrams. Once a class diagram is either created

or opened, this diagram is ready to be drawn in the specified

window. The main functions for a class diagram in this

window are as follows:

 Creating an Object.

 Object Modification: it means the properties of this object

can be modified.

 Object Navigation: this means the object can be moved

around the specified window.

 Object Deletion.

Each of these functions would be available on both class box

and association objects. Figure 15 shows the main functions

that need to be implemented for class diagram objects.

Fig. 14. The integration of the class diagram system within the WinCASE

framework

C. File Structure Design

As far as the current WinCASE files structure is concerned, a

package called CD needs to be created in the

Methodology.DFA.Diagrams package. The CD package

represents the class diagram and it contains a class called

CLSDiagram. The function of this class is to initialise the

class diagram by invoking other classes and methods. This

class is the core one as it sets all the objects and connections

of a class diagram. Conveniently, the packages of

methodology objects need to be setup in the

MethodologyObjects package. They would be named Entity

and Association packages. Simply, the Entity package

represents the class box objects, and the Association package

represents the association objects. Each of these packages has

two basic sub-packages, which are Properties and

Representations. Regarding the Properties package; as its

name suggests, it includes the main properties classes for its

own methodology object. The Representation package

contains sub-package(s) as well. With respect to the

Association package, there is only one Representations sub-

package called Normal. At the same time, in the Entity

package there are two Representations sub-packages which

are Normal and Temporary. Each of them has a number of

classes and a package named Symbols. These classes

represent their objects. The Symbols package also has classes

that define their object symbols, such as the association

name, the arrow heads and the direction arrow for association

objects.

The structure would appear quite complicated; however it is

slightly similar to the current structure techniques. Figure 16

illustrates the prospective structure for these packages along

with the current packages. Notice that the package of the

class box object is named Entity in order to avoid any

confusion, as “class” is a reserved word in java.

Fig. 15. The main functions are implemented for class diagram objects

D. Methodology Objects

In this research, there are two methodology objects were

added to the previous ones. These objects are Association

and Entity. In fact, these objects are slightly similar to some

of the existing objects as follows:

 The Association is similar to the Dataflow object in the

DFA methodology in the basic concepts since they both

play the role of connecting objects to each other and

carrying information between them. However, a

considerable amount of work was carried out to

implement the properties of this object.

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

25

 The Class object bases are similar to the Process object

bases. Both objects have a basic rectangle shape,

irrespective of the dimensions and internal partitions.

They also both have an object name. Nevertheless, quite

sophisticated work was performed. This work involves

dividing the rectangle into three parts and adding a

number of attributes and operations to this rectangle.

Subsequently, fitting each of these parts in the specified

section also was carried out. Figure 16 illustrates the file

structure of the Class Diagram within the WinCASE file

structure.

Fig. 16. The file structure of the class diagram within the WinCASE file

structure

The following detail explains the implemented methodology

objects of the CD in the WinCASE file structure:

1) Entity Objects

The Entity object represents the class box. This class requires

name, attributes, and operations. The design of class

properties is as follows:

 Class name: it is a string of a text which represents the

name of its class.

 Attributes: there will be up to five attributes in a class

object, and they are text strings.

 Operations: there also will be up to five attributes of text

string within a class.

2) Association Objects

It is simply represented by a line. The properties of

associations have to fit into the specified locations. Basically,

the head arrows fit at the edges of this line. The association

name is located around the middle of its association. The

arrow direction fits near the name. All these are known as the

properties of an association.

To summarise, this section discusses the analysis of the

current WinCASE structure and the functionality of the

WinCASE system. The Methodology package was studied in

order to define the implementation of CD within it.

Subsequently, the repository of the WinCASE also

investigated and how the information is stored and retrieved,

so it can be updated for the new integration of CD. The

diagrams of the current WinCASE were studied as well. The

interfaces of the WinCASE were considered in order to

explore the technology of the WinCASE. As a result, the

design of CD and all its elements were carried out.

VI. CONCLUSION

The aim of this paper is to investigate and develop the

WinCASE framework by integrating the class diagram in

UML notation within this framework. Therefore, the

background and previous work of this research were

reviewed and discussed deeply. In more detail, the WinCASE

tool and DFA were reviewed. The UML Class Diagram was

also discussed. It’s found out that the integration of CD

within the WinCASE is possible by making use of the current

functionality and methodology and then develop and

integrate the new Class diagram. Subsequently, the

methodology of CD was setup. The file structure of the

WinCASE was enhanced by adding the CD file structure.

Furthermore, the class diagram components were

implemented and integrated into the WinCASE tool. Thus,

large class diagrams can be drawn by this editor. To

conclude, the contribution of this paper as follows; the

requirements and the methodology for the development of

WinCASE tool and integrating the class diagram were

identified and setup. The needed objects were also identified.

Subsequently, the design of the new CD methodology and

interfaces were carried out. Consequently, the Class Diagram

was implemented and tested for evaluation purpose. As a

result, Currently, the WinCASE tool was provided with an

editor for drawing a class diagram within the DFA

methodology.

REFERENCES

[1] Fuggetta, A., A classification of CASE technology.

Computer, 1993. 26(12): p. 25-38.

[2] Denton, M., Implementing Sequence Diagrams within the

WinCASE Framework. BSc, University of Sheffield,

2003.

[3] Klaib, A., Data Models and the Dataflow Algebra within

WinCASE, in MSc Dissertation 2004/2005, Sheffield

University: Sheffield University.

[4] Oxspring, R. and G. Manson, Implementing a PCSC Tool

within the WinCASE Framework. 3rd Year Dissertation,

Department of Computer Science, University of

Sheffield, 2000.

[5] Cowling, T., Extending the Eclipse Version of WinCASE.

UNIVERSITY OF SHEFFIELD.

[6] Cowling, A., Basic System and Subsystem Structures in

the Dataflow Algebra. 2008, Department of Computer

Science Research Report CS-08-12, University of

Sheffield.

[7] Fowler, M., UML distilled: a brief guide to the standard

object modeling language. 2004: Addison-Wesley

Professional.

Albahit journal of applied sciences ISSN 2708-244X, e-ISSN 2708-8936, Vol. 2, Issue 2, 2021, 17- 26

26

[8] Podeswa, H., UML for the IT Business Analyst. 2009:

Course Technology Press.

[9] Sommerville, I., Software engineering 9th Edition. ISBN-

10, 2011. 137035152: p. 18.

[10] Cowling, A., Properties of The Synchronous Merge

Operation in the Dataflow Algebra. 2009, Department of

Computer Science Research Report CS-09-07, University

of Sheffield.

[11] Cowling, A., A Revised Denotational Semantics for the

Dataflow Algebra. 2006, Department of Computer

Science Research Report CS-06-11, University of

Sheffield.

[12] Cowling, A., A simplified abstract syntax for the

dataflow algebra. 2002, Department of Computer Science

Research Report CS-02-09,

University of Sheffield.

Cowling, A., Normal Forms in the Dataflow Algebra. 2007,

Department of Computer Science Research Report CS-

07-11, University of Sheffield.

[14] Cowling, A. and M. Nike, Dataflow Algebra

Specifications of Pipeline Structures. Sheffield University

CS-97-17, 1997.

[15] Cowling, A.J., Dataflow algebras as formal specifications

of data flows. 1995: University of Sheffield, Department

of Computer Science.

[16] Cowling, A., Equality and Inequality in the Dataflow

Algebra. 2008, Department of Computer Science

Research Report CS-08-03, University of Sheffield.

[17] Cowling, A., Fundamental Compositionality Properties

of Systems in the Dataflow Algebra. 2010, Department of

Computer Science Research Report CS-10-03, University

of Sheffield.

[18] Cowling, A.J. and M. Nike, Using dataflow algebra to

analyse the alternating bit protocol, in Software

Engineering for Parallel and Distributed Systems. 1996,

Springer. p. 195-207.

[19] Starr, L. and S.J. Foreword By-Mellor, Executable UML:

how to build class models. 2001: Prentice Hall PTR.

[20] Klaib, A. and L. Joan, Investigation into indexing XML

data techniques. 2014.

[21] Thomson, C.D., Linking Dataflow Algebra with the

CaDiZ Tool. The dissertation can be referred to as 3rd

Year Dissertation, Department of Computer Science,

University of Sheffield, 2001.

[22] Cowling, A., An Operational Semantics for the Dataflow

Algebra. 2004, Department of Computer Science

Research Report CS-04-16, University of Sheffield.

[23] Cowling, A., Operations for Composing Subsystems in

the Dataflow Algebra. 2008, Department of Computer

Science Research Report CS-08-13, University of

Sheffield.

