

Albahit Journal of Applied Sciences
"open-access, peer-reviewed biannual journal"

Volume 5, Issue 1, 2025

Page No: 82-93

Website: https://albahitjas.com.ly/index.php/albahit/en/index

82 | Albahit Journal of Applied Sciences

Design and implementation of a High efficiency UART model using VHDL

and PicoBlaze on Xilinx FPGA platforms

Hamed F. Alsalhin Saleh 1*, Fathalla I. Solman 2, Zead Hamad Abdulkarim 3 *

1,2,3 Higher Technical Educations, Department of Electrical Engineering,College of Engineering Technologies –

Alqubah-Libya

*Corresponding author: hlibya60@gmail.com

Received: March 16, 2025 Accepted: June 12, 2025 Published: July 18, 2025
Abstract:

Digital design using the Hardware Description Language (VHDL) is a fundamental approach in developing

embedded systems, as it enables the construction of highly efficient circuits that can be implemented on FPGA

platforms. The importance of this research lies in exploring the integration between the PicoBlaze processor and

Xilinx software for designing a high-efficiency UART unit, thereby enhancing data transmission performance

while minimizing resource utilization in modern digital systems.

The research problem stems from the limited applied studies that address the effective integration of the PicoBlaze

architecture with VHDL-based UART units, particularly in terms of achieving efficient data processing and

transmission with low resource consumption. This gap highlights the need for a practical model that demonstrates

the feasibility of such integration.

In this study, the methodology involved designing a UART unit using VHDL and integrating it with the PicoBlaze

processor through the Xilinx ISE environment. The main objective was to perform an addition operation on the

digits of the student’s identification number (SID) and transmit the result via UART in hexadecimal format,

thereby validating the efficiency of hardware–software co-design.

The results confirmed the successful implementation, as the seven digits were correctly summed and the output

transmitted through UART. Simulation outcomes further demonstrated functional accuracy and efficient resource

utilization. The study concludes that combining PicoBlaze with VHDL provides a high-efficiency framework for

signal processing and embedded system control, with potential for future extensions such as multi-channel support

and flow control enhancements.

Keywords: VHDL, PicoBlaze, UART, Embedded Systems, Xilinx, FPGA .

في PicoBlazeومعالج VHDLعالية الكفاءة باستخدام UARTتصميم وتنفيذ وحدة

 Xilinxبيئة

 *3، زياد حمد عبد الكريم 2، فتح الله ابراهيم سليمان *1حامد فضل الله الصالحين صالح

 لتعليم العالي التقني، قسم الهندسة الكهربائية، كلية التقنيات الهندسية، القبة، ليبيا ا 1،2،3

 الملخص

أحد الأساليب الجوهرية في تطوير الأنظمة المدمجة، حيث (VHDL) يمثل التصميم الرقمي باستخدام لغة وصف العتاد

وتكمن أهمية هذا البحث في استعراض إمكانات الدمج بين .FPGA يتيح بناء دوائر عالية الكفاءة قابلة للتنفيذ على منصات

البيانات UART لتصميم وحدة Xilinx وبرمجيات PicoBlaze معالج الكفاءة، بما يساهم في تحسين كفاءة نقل عالية

 .وتقليل استهلاك الموارد داخل الأنظمة الرقمية الحديثة

بين معمارية فعالًً التي تستعرض تكاملاً التطبيقية الدراسات البحثية في محدودية المشكلة ووحدات PicoBlaze تكمن

UART المصممة بلغة VHDL خاصة فيما يتعلق بمعالجة الإشارات ونقل البيانات بكفاءة عالية مع الحفاظ على استهلاك ،

 .منخفض للموارد. ومن هنا تأتي الحاجة إلى تقديم نموذج تطبيقي يبرهن على جدوى هذا الدمج

من PicoBlaze ودمجها مع معالج VHDL باستخدام UART في هذا البحث، تم اعتماد منهجية تقوم على تصميم وحدة

الهدف .FPGA شملت الخطوات الرئيسة كتابة الكود، المحاكاة، ثم التوليف والتنفيذ على شريحة .Xilinx ISE خلال بيئة

https://albahitjas.com.ly/index.php/albahit/en/index
mailto:hlibya60@gmail.com

83 | Albahit Journal of Applied Sciences

الطالب لرقم هوية المكوّنة الناتج عبر (SID) الرئيس كان إجراء عملية جمع للأرقام بصيغة سداسية UART وإرسال

 .عشرية، بما يختبر كفاءة التكامل بين البرمجيات والأجهزة

، كما UARTأظهرت النتائج نجاح عملية التصميم والتنفيذ، حيث تم جمع الأرقام السبعة بشكل صحيح وإرسال الناتج عبر

يوفر بنية VHDLو PicoBlazeأثبتت المحاكاة صحة الأداء وكفاءة استهلاك الموارد. خلص البحث إلى أن الدمج بين

عالية الكفاءة لمعالجة الإشارات والتحكم في الأنظمة المدمجة، مع فتح آفاق لتطوير وظائف متقدمة كالدعم المتعدد القنوات

 والتحكم في التدفق.

 Xilinx ،FPGA، الأنظمة المدمجة، VHDL ،PicoBlaze ،UART :الكلمات المفتاحية

Introduction

VHDL has a rich and interesting history[1]. But since knowing this history is probably not going to help you write

better VHDL code, it will only be briefly mentioned here. Consulting other, lengthier texts or search engines will

provide more information for those who are interested. Regarding the VHDL acronym, the V is short for yet

another acronym: VHSIC or Very High-Speed Integrated Circuit. The HDL stands for Hardware Description

Language. Clearly, the state of technical airs these days has done away with the need for nested acronyms. VHDL

is a true computer language with the accompanying set of syntax and usage rules.[2] But, as opposed to higher-

level computer languages, VHDL is primarily used to describe hardware. The tendency for most people familiar

with a higher-level computer language such as C or Java is to view VHDL as just another computer language.

This is not altogether bad approach if such a view facilitates the understanding and memorization of the language

syntax and a structure. The common mistake made by someone with this approach is to attempt to program in

VHDL as they would program a higher-level computer language. Higher- level computer languages are sequential

in nature; VHDL is not [3].

VHDL was invented to describe hardware and in fact VHDL is a concurrent language. What this means is that,

normally, VHDL instructions are all executed at the same time (concurrently), regardless of the size of your

implementation. Another way of looking at this is that higher-level computer languages are used to describe

algorithms (sequential execution) and VHDL is used to describe hardware (parallel execution). This inherent

difference should necessarily encourage you to re-think how you write your VHDL code. Attempts to write VHDL

code with a high-level language style generally result in VHDL code that no one understands. Moreover, the tools

used to synthesize2 this type of code have a tendency to generate circuits that generally do not work correctly and

have bugs that are nearly impossible to trace. And if the circuit does actually work, it will most likely be

inefficient due to the fact that the resulting hardware was unnecessarily large and overly complex. This problem

is compounded as the size and complexity of your circuits becomes greater.[4]

There are two primary purposes for hardware description languages such as VHDL. First, VHDL can be used to

model digital circuits and systems. Although the word \model" is one of those overly used words in engineering,

in this context it simply refers to a description of something that presents a certain level of detail. The nice thing

about VHDL is that the level of detail is unambiguous due to the rich syntax rules associated with it. In other

words, VHDL provides everything that is necessary in order to describe any digital circuit. Likewise, a digital

circuit/system is any circuit that processes or stores digital information. Second, having some type of circuit model

allows for the subsequent simulation and/or testing of the circuit. The VHDL model can also be translated into a

form that can be used to generate actual working circuits.[5]

The VHDL model is magically3 interpreted by software tools in such a way as to create actual digital circuits in

a process known as synthesis. There are other logic languages available to model the behavior of digital circuit

designs that are easy to use because they provide a graphical method to model circuits. For them, the tendency is

to prefer the graphical approach because it has such a comfortable learning curve. But, as you can easily imagine,

your growing knowledge of digital concepts is accompanied by the ever-increasing complexity of digital circuits

you are dealing with. The act of graphically connecting a bunch of lines on the computer screen quickly becomes

tedious. The more intelligent approach to digital circuit design is to start with a system that is able to describe

exactly how your digital circuit works (in other words, modeling it) without having to worry about the details of

connecting massive quantities of signal lines. Having a working knowledge of VHDL will provide you with the

tools to model digital circuits in a much more intelligent manner[6].

Finally, you will be able to use your VHDL code to create actual functioning circuits. This allows you to

implement relatively complex circuits in a relatively short period of time. The design methodology you will be

using allows you to dedicate more time to designing your circuits and less time \constructing" them. The days of

placing, wiring and troubleshooting multiple integrated circuits on a proto-board are gone. VHDL is a very

exciting language that can allow the design and implementation of functions capable of processing an enormous

amount of data by employing a relatively low-cost and low-power hardware. Moreover, what is really impressive

84 | Albahit Journal of Applied Sciences

is that, via simple VHDL modules, you can have direct access to basic ns-level logic events as well as

communicate using a USB port or drive a VGA monitor to visualize graphics of modest complexity. Modeling

digital circuits with VHDL is a form of modern digital design distinct.[7].

Tools Needed for VHDL Development

VHDL is a programming language used to implement hardware which will run other software (for example C).

A Field Programmable Gate Array (FPGA) is probably the most common device that you can use for your VHDL

implementations. If you want to do VHDL coding for FPGAs you will have to play within the rules that current

major FPGA manufacturers have drawn up to help you (rules which also ensure their continued existence in the

market). The successful implementation of a VHDL-based system roughly calls for the following steps: VHDL

code writing, compiling, simulation and synthesis. All major FPGA manufacturers have a set of software and

hardware tools that you can use to per-form the mentioned steps. Most of these software tools are free of charge

but are not open-source. Nevertheless, the same tools follow a license scheme, whereby paying a certain amount

of money allows you to take advantage of sophisticated software features or get your hands on proprietary libraries

with lots of components (e.g. a 32-bit processor) that you can easily include in your own project.

Background

KCPSM3 is a very simple 8-bit microcontroller primarily for the Spartan -3 device but also suitable for use in

Virttex –II and Virttex-IIPRO devices. Although it could be used for processing of data, it is most likely to be

employed in applications requiring a complex ,but non-time critical state machine .Hence it has the name of '(K)

constant coded Programmable state machine'.

This revised version of popular KCPSM macro has still been developed with one dominant factor being held

above all others –Size ! The result is a microcontroller which occupies just 96 spartant -3 slices which is just 5%

of XC3S200 device and less than 0.3 % of the XC3S5000 device .Together with small amount of logic ,a single

block RAM is used to form a ROM store for a program of up to 1024 instructions .Even with such size

constructions ,the performance is respectable at approximately 43 to 66 MIPS depending on device type and speed

grade.[9].

Figure 1. KCPSM3 8-bit microcontroller.

One of the most exciting feature of the KCPSM3 is that it is totally embedded into the device and require no

external support. The very fact that any logic can be connected to the module inside the Spartan-3 or Virttex –II

dvice means that any additional features can be added to provide ultimate flexibility .It is not so much which

inside the KCPSM3 module that makes it useful but the environment in which it live .[8].

85 | Albahit Journal of Applied Sciences

Figure 2: KCPSM3 Architecture.

Using KCPSM3 (VHDL)

The principal method by which KCPSM3 will be used in a VHDL design flow .the KCPSM3 macro is provided

as a source VHDL (KCSPM3.vhdl) which has been written to provide an optimum and implementation in a

spartan-3 or Virttex –II (PRO) device .the code is suitable for implementation and simulation of thed macro .It

has been developed and tested using XST for implementation and ModelSim for simulation .The code should not

be modified in any way [9].

KCPSM3 Assembler

The KCPSM3 Assembler is provided as a simple DOS executable file together with three template files .Copy all

files KCPSM3.EXE,ROM_form.v and ROM_form coe into your working directory .

Programs are best written with either the standard Notepad or Word pad tools .The file is saved with a psm file

extention (8 character name limit).

Open a DOS box and navigate to the working directory .Then run the assembler 'Kcpsm3<filename>[psm]' to

assemble your program.It all happens very fast.

Simulation of KCPSM3

KCPSM3 is supplied as VHDL macro together with an assembler .No tools are currently supplied for the direct

simulation of code. However, this immediate lack of simulation tools does not appear to have deterred many

thousands of Engineers from using PicoBlaze macros over the past few years . Common reasons for this

acceptance of this situation are :-

Interaction with hardware

It is very common for PicoBlaze to be highly interactive with the hardware in which it is embedded. With virtually

continues interaction between the processor and the input and output ports. It would be difficult to simulate these

interactions in a purely software isolated environment. In a similar way, the simulation of the hardware design

require-s the stimulus from the processor. So in many cases, the simulation of the processor will become part of

the hardware simulation using a tool such as ModelSim. The following pages illustrates how the KCPSM3 macro

can be used directly in a VHDL simulation and describes some features withen the coding of the macro witch

enhence the simulation of the PSM softwre execution as well as the I/O ports.[10] .

Objectives

1. Integrate the PicoBlaze embedded processor with a VHDL-based UART.

2. Develop a PicoBlaze assembly program to send a fixed text message via the UART.

3. Simulate the complete system in Xilinx ISE to verify correct message transmission..

86 | Albahit Journal of Applied Sciences

Literature review

1. Introduction and scope

A Universal Asynchronous Receiver/Transmitter (UART) provides simple, byte-oriented serial communication

and is widely used for control, debug and data links in FPGA-based systems. Embedding a UART inside an FPGA

commonly uses a hardware core written in an HDL (VHDL/Verilog) and—for flexible control—can be paired

with a soft microcontroller such as Xilinx’s PicoBlaze. The literature on this subject covers pure HDL UART

cores, UARTs with FIFO buffering, PicoBlaze-based solutions using prewritten UART macros, and optimizations

to boost throughput, reliability and resource-efficiency on Xilinx devices. [17].

2. Technical background

• UART basics. A UART consists of a baud-rate generator, transmitter (TX) and receiver (RX) logic,

often with start/stop/parity handling, and commonly integrates FIFOs to decouple host and serial timings.

Implementations vary from simple bit-serial state machines to multi-channel, buffered designs

supporting higher throughput and robustness. [17]

• PicoBlaze softcore. PicoBlaze (KCPSM family) is an 8-bit, resource-light Xilinx soft microcontroller

commonly supplied with VHDL sources and a set of reference macros (including UART macros and

FIFO helpers). Many FPGA SoC designs use PicoBlaze to handle protocol parsing, control and less

timing-critical parts of serial I/O while the fast bit-serial timing is in hardware. The PicoBlaze

documentation and UART macro user-guides provide common integration approaches and reference

designs[17].

3. Representative designs and reference implementations

• Simple HDL UARTs. Several academic and conference papers present classic VHDL UARTs (baud

generator + RX/TX state machines). These are used for teaching and low-throughput links; they are

straightforward to synthesize onto Spartan/Artix devices. (e.g., many publications and online tutorials).

[18]

• UART + FIFO / multi-channel designs. To avoid data loss and to allow burst transfers, many

implementations add asynchronous FIFOs (TX and RX). Papers and project reports show UART+FIFO

implemented in VHDL with successful deployment on Spartan/Artix families; such designs permit clock-

domain crossing, buffering for host processing, and variable baud rates. [18].

• PicoBlaze + UART macros / reference designs. Xilinx-supplied or community-supplied PicoBlaze

projects commonly include UART macros (with small FIFOs) and application notes showing how the

PicoBlaze can drive/consume bytes and handle higher-level protocol logic (command parsing, debug

consoles). The KCPSM6 and earlier KCPSM3 documentation include UART macro examples and

integration notes. [18].

4. Efficiency techniques reported in literature

For “high efficiency” (interpreted as high throughput, low-latency, and/or low resource use), the literature

repeatedly emphasizes these approaches:

1. Hardware FIFO buffering (TX/RX FIFOs) to decouple serial timing from processing and avoid

dropped bytes under bursty traffic. FIFO depth tuned to worst-case processing latency yields reliability

at modest area cost. [18].

2. Baud-rate generation and oversampling — accurate baud generation and receiver oversampling (e.g.,

4x–16x) reduce bit errors and allow digital filtering; some designs sample at system clock and use

accumulators or running-sum filters for noisy channels. Filtering/oversampling choices trade area &

clock constraints for robustness. [18].

3. Parallelization / multi-channel cores — implementing several UART channels in parallel or time-

multiplexed with shared resources supports multiple serial links (paper examples with 4 channels). This

increases throughput per FPGA but raises area/complexity.[18].

4. Offloading time-critical parts to pure hardware while keeping higher-level parsing/flow control in

PicoBlaze. Hardware handles bit timing and framing; PicoBlaze handles command-level logic. This

hybrid approach leverages the strengths of both HDL and softcore. [18].

5. Resource-aware coding (VHDL optimization) — designers minimize logic by using counters rather

than fully parallel logic for baud generation, leveraging Xilinx primitives (SRL16, distributed RAM for

FIFOs where appropriate), and careful floorplanning when necessary to meet timing on faster baud rates.

Community projects and Xilinx notes often highlight these optimizations. [18].

5. Noise tolerance & reliability strategies

Some literature addresses robust UART operation over noisy channels: e.g., using digital filters like recursive

running-sum filters to eliminate spurious transitions, programmable sample windows to adapt to bitrate and noise,

and CRC or packet framing at higher layers to recover from residual errors. These improvements increase gate

count but are necessary in industrial applications. [19].

6. Tools, target devices and development flows

87 | Albahit Journal of Applied Sciences

• Xilinx tools (ISE for older Spartan devices, Vivado for 7-series and later) are the common

synthesis/implementation environments. Many published projects targeted Spartan-3E, Spartan-6, Artix-

7 and other Xilinx families. PicoBlaze source and macros are provided in VHDL and reference examples

are widely available. Github repositories provide working testbenches and board-level examples

(Basys3, Nexys, Zybo) for rapid prototyping. [19].

7. Gaps and opportunities identified in the literature

• Benchmarking & standardization. There is limited standardized benchmarking of “efficiency” across

designs (area vs throughput vs latency). Many papers provide functionality and device usage for a given

FPGA family but comparing different optimizations is hard without common benchmarks.

• Integration with modern Xilinx toolchains & IP. Some community designs still target older toolchains

(ISE) or older PicoBlaze variants; updates for Vivado flows and 7-series/UltraScale devices can be

improved and documented.

• Hardware offload variants. There is space for more systematic studies of how much functionality to

move into hardware vs PicoBlaze (e.g., flow control, DMA-like burst transfers, multi-drop addressing)

for different application classes.

• Security & advanced features. Little work in the surveyed literature addresses encrypted or

authenticated serial links within lightweight FPGA UARTs; low-cost crypto offload could be a niche.

[20].

Results and discussion

PART A
VHDL TOP LEVEL CODE

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

library STD;

use STD.textio.all;

use IEEE.std_logic_textio.all;

entity hamed_SID is

 port(

 clk, reset: in std_logic;

 tx: out std_logic

);

end hamed_SID;

architecture arch of hamed_SID is---defines the top level code architecture

 -- KCPSM3/ROM signals

 signal address: std_logic_vector(9 downto 0);

 signal instruction: std_logic_vector(17 downto 0);

 signal port_id: std_logic_vector(7 downto 0);

 signal in_port, out_port: std_logic_vector(7 downto 0);

 signal wstrobe, rstrobe: std_logic;

 signal interrupt, interrupt_ack: std_logic;

 signal kcpsm_reset: std_logic;

 -- I/O port signals

 -- output enable

 --signal en_d: std_logic_vector(6 downto 0);

 -- uart

 signal w_data: std_logic_vector(7 downto 0);

 signal rd_uart, rx_not_empty, rx_empty: std_logic;

 signal wr_uart, tx_full: std_logic;

 -- multiplier

begin

 -- ===

 -- File Writing

 -- ===

 output_file: process (wstrobe)

 file datafile : text open write_mode is "saleh_output.txt";

This defines the name of the design

This defines the end of the entity

The

signal

interface

is

declared

The UART signal is

declared

Text code to output the

input file

88 | Albahit Journal of Applied Sciences

 variable serialout : line ;

 begin

 if rising_edge (wstrobe) then

 write(serialout,"5370160 Output UART_HEX -- ");

 hwrite(serialout,out_port);

 writeline(datafile,serialout);

 end if;

 end process output_file;

 -- ===

 -- KCPSM and ROM instantiation

 -- ===

 proc_unit: entity work.kcpsm3

 port map(

 clk=>clk, reset =>reset,

 address=>address, instruction=>instruction,

 port_id=>port_id, write_strobe=>wstrobe,

 out_port=>out_port, read_strobe=>rstrobe,

 in_port=>in_port, interrupt=>interrupt,

 interrupt_ack=>interrupt_ack);

 saleh_rom: entity work.saleh

 port map(clk => clk, address=>address,

 instruction=>instruction);

 -- ===

 -- Port Mapping and component instantiation for transmitter

 -- ===

 uart_xmitter: entity work.xmitter(arch)

 port map(clk => clk , reset => reset,

 wr_uart => wstrobe, w_data => out_port,

 tx_full => tx_full, tx => tx);

 in_port(7) <= tx_full;

 in_port(6 downto 0) <= "0000000";

end arch;

Evidence for successful compilation of result

Started : "Check Syntax for hamed_SID".

Running xst...

Command Line: xst -intstyle ise -ifn H:/.xilinx/hhhamd/hamed_SID.xst -ofn

hamed_SID.stx

===

* HDL Compilation *

===

Compiling vhdl file "C:/Users/salehh2/Desktop/new cw/mod_m.vhd" in Library

work.

Entity <mod_m_counter> compiled.

Entity <mod_m_counter> (Architecture <arch>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/new cw/list_ch04_20_fifo.vhd"

in Library work.

Entity <fifo> compiled.

Entity <fifo> (Architecture <arch>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/new

cw/list_ch07_03_uart_tx.vhd" in Library work.

Entity <uart_tx> compiled.

Entity <uart_tx> (Architecture <arch>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/new cw/kcpsm3.vhd" in Library

work.

This

instantiates

the kcpsm3

picoblaze

processor

Instantiates the ROM

file

89 | Albahit Journal of Applied Sciences

Entity <kcpsm3> compiled.

Entity <kcpsm3> (Architecture <proc>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/demo/Assembler/SALEH.VHD" in

Library work.

Entity <saleh> compiled.

Entity <saleh> (Architecture <low_level_definition>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/new cw/xmitter.vhd" in Library

work.

Entity <xmitter> compiled.

Entity <xmitter> (Architecture <arch>) compiled.

Compiling vhdl file "C:/Users/salehh2/Desktop/new cw/top level.vhd" in

Library work.

Entity <hamed_SID> compiled.

Entity <hamed_SID> (Architecture <arch>) compiled.

Process "Check Syntax" completed successfully

Image proof of successful compilation

Figure 3:Image proof of successful compilation PART B

;5370160 = 5+3+7+0+1+6+0

begin: LOAD s1,05 ;

 LOAD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,03 ;

 ADD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,07 ;

 ADD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,00 ;

 ADD s2,s1 ;

90 | Albahit Journal of Applied Sciences

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,01 ;

 ADD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,06 ;

 ADD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,00 ;

 ADD s2,s1 ;

 CALL tx ;

 OUTPUT s1,80 ;

 LOAD s1,s2 ;

 CALL tx ;

 OUTPUT s1,80 ;

 JUMP begin ;

;----------------------------------

;Status of tx wait for tx

;----------------------------------

tx : INPUT s0,00 ;

 AND s0,80 ;

 JUMP NZ,tx ;

 RETURN ;

Image to show that the picoblaze assembler compiled successful

Figure 4.Image to show that the picoblaze assembler compiled successful.

The input file

is read here.

All the

digits are

added and

loaded

before

transmitting

to UART

character.

91 | Albahit Journal of Applied Sciences

PART C

Image capture of Simulation behaviour

Figure 5: Image capture of Simulation behaviour.

Output text file result

5370160 Output UART_HEX -- 05

5370160 Output UART_HEX -- 03

5370160 Output UART_HEX -- 07

5370160 Output UART_HEX -- 00

5370160 Output UART_HEX -- 01

5370160 Output UART_HEX -- 06

5370160 Output UART_HEX -- 00

5370160 Output UART_HEX -- 16

5370160 Output UART_HEX -- 05

5370160 Output UART_HEX -- 03

5370160 Output UART_HEX -- 07

5370160 Output UART_HEX -- 00

The VHDL code that instantiated the text file result

-- ===

 -- File Writing

 -- ===

 output_file: process (wstrobe)

 file datafile : text open write_mode is "saleh_output.txt";

 variable serialout : line ;

 begin

 if rising_edge (wstrobe) then

This is the

transmitted

fifo output.
This is where the addition of

the SID number is done. The

first, second, third, fourth, fifth,

sixth and seventh digit added

together and transmitted in

UART character to give the

output which is 16 in HEX

Defined the

UART

transmitted

file to be

simulated.

The output results

from Xilinx.

The loop is

repeated

again

92 | Albahit Journal of Applied Sciences

 write(serialout,"5370160 Output UART_HEX -- ");

 hwrite(serialout,out_port);

 writeline(datafile,serialout);

 end if;

 end process output_file;

 Conclusion

1. The task was successfully implemented, and the generated code in Xilinx was adequately documented

with proper comments.

2. The inclusion of the SID number was correctly achieved within the design.

3. The first through seventh digits of the number were added together, and the result was transmitted via

UART, producing an output value of 16 (HEX).

4. A comprehensive understanding of digital design using VHDL was accomplished through the practical

application.

5. Evidence from academic studies, application notes, and open-source projects supports a hybrid

approach that combines:

a. Implementing time-critical UART functions in VHDL with optional FIFO buffering and noise

filtering.

b. Employing the lightweight PicoBlaze softcore for higher-level protocol processing and control

logic.

6. Efficiency improvements are achieved through:

a. Careful sizing of FIFO buffers according to application requirements.

b. Leveraging block RAM or distributed memory resources to minimize logic utilization.

c. Offloading repetitive byte-handling tasks to dedicated hardware components.

d. Writing optimized VHDL code that maps effectively onto Xilinx FPGA architectures.

7. The literature further highlights potential research directions, including:

a. Establishing standardized benchmarks for evaluating UART performance and efficiency.

b. Updating reference designs to align with modern Vivado toolchains and next-generation FPGA

families.

c. Exploring advanced features such as multi-channel support, DMA-like burst transfers, and

enhanced communication security.

Recommended architecture for a “high-efficiency” design

1. Hardware UART core (VHDL) that implements precise baud generation, oversampled receiver

(configurable oversample rate), start/stop/parity support, and optional digital filtering (programmable

running-sum or majority voting).[20].

2. Asynchronous TX and RX FIFOs (depth sized for worst-case PicoBlaze latency and expected bursts).

Use block RAM or distributed RAM depending on size and device family to save LUTs.

3. Flow control and DMA-style bursting: Add simple hardware signals to notify PicoBlaze of FIFO fill

levels and allow block transfers (PicoBlaze reads/writes bursts from the FIFO via port-mapped IO).

4. PicoBlaze firmware for higher-level parsing, protocol handling, error recovery, and optional command

interface (console). Keep timing-critical tasks in hardware to avoid dropped bytes. Use PicoBlaze UART

macros if suitable. [20].

5. Verification: Build testbench with variable jitter/noise models, exercise multiple baud rates and channel

error injection. Target both functional and timing closure in the chosen Xilinx toolchain (Vivado for

modern FPGAs). [20].

References

[1] Albahit Journal of Applied Sciences. (2025). Design and implementation of a high efficiency UART model

using VHDL and PicoBlaze on Xilinx FPGA platforms. Albahit Journal of Applied Sciences, 5(1), 1–11.

[2] Ashenden, P. J. (2002). The designer’s guide to VHDL (2nd ed.). Morgan Kaufmann Publishers.

[3] Brown, S., & Vranesic, Z. (2004). Fundamentals of digital logic with VHDL design (2nd ed.). McGraw-Hill.

[4] Clemente, J. A. (2014). Introduction to VHDL programming (M. Sánchez-Élez, Trans.). Retrieved November

13, 2014.

[5] GCC. (n.d.). GNU Compiler Collection (GCC). http://gcc.gnu.org

[6] GHDL. (n.d.). Open-source VHDL simulator GHDL. http://ghdl.free.fr

[7] Mano, M. M., & Kime, C. (2000). Logic and computer design fundamentals. Prentice Hall.

[8] Perry, D. (1998). VHDL (3rd ed.). McGraw-Hill.

[9] PicoBlaze UART & KCPSM6 User Guide/Macros. (n.d.). UART macros and PicoBlaze integration notes.

Retrieved from viterbi-web.usc.edu, eng.auburn.edu

93 | Albahit Journal of Applied Sciences

[10] Qualis Design Corporation. (n.d.). VHDL reference cards.

http://www.vhdl.org/rassp/vhdl/guidelines/vhdlqrc.pdf

[11] Qualis Design Corporation. (n.d.). 1164 VHDL reference guidelines.

http://www.vhdl.org/rassp/vhdl/guidelines/1164qrc.pdf

[12] ResearchGate. (n.d.). Academic articles on efficient UART architectures. Retrieved from

https://www.researchgate.net

[13] Roth, C. H. (1997). Digital systems design using VHDL. ITP Nelson.

[14] Skahill, K. (1996). VHDL for programmable logic. Addison Wesley.

[15] Wikipedia. (n.d.). VHDL. In Wikipedia. http://en.wikipedia.org/wiki/VHDL

[16] Xilinx. (n.d.). ISE Design Suite. http://www.xilinx.com/tools/designtools.htm

Yalamanchili, S. (2001). Introductory VHDL: From simulation to synthesis. Prentice Hall.

