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Abstract:  

The proliferation of distributed photovoltaic systems integrated with Internet of Things (IoT) sensing 

infrastructure necessitates advanced predictive frameworks capable of resolving dynamic energy loss mechanisms 

across heterogeneous grid topologies. Traditional data-driven models often neglect the underlying physical 

conservation laws, leading to physically inconsistent extrapolations under sparse or noisy sensor regimes. In this 

study, this research introduces a novel Physics-Informed Neural Network (PINN) architecture explicitly 

constrained by the first and second laws of thermodynamics, Kirchhoff’s circuit laws, and semiconductor carrier 

transport equations. Leveraging real-time telemetry from embedded IoT sensors across a 12.4 MWp smart solar 

grid in southern Spain, this research model achieves a mean absolute percentage error (MAPE) of 1.87% in 

predicting transient energy dissipation, outperforming conventional LSTM and XGBoost benchmarks by 38.2% 

and 41.7%, respectively. Furthermore, the PINN framework identifies dominant loss pathways, including ohmic 

heating in DC cabling (23.1%), inverter hysteresis (17.8%), and module mismatch under partial shading (14.3%), 

with 94.6% attribution accuracy, which has been evaluated by using Python software. This work establishes a new 

paradigm for embedding first-principles physics into deep learning architectures for grid-scale renewable energy 

diagnostics, enabling real-time anomaly detection, adaptive maintenance scheduling, and topology-aware 

efficiency optimization. 

 

Keywords: Physics-Informed Neural Networks; Smart Solar Grids; IoT Sensor Networks; Energy Loss 

Mechanisms; Thermodynamic Constraints; Deep Learning for Renewable Energy; Predictive Grid Analytics. 

 

الشبكات العصبية المستندة إلى الفيزياء للنمذجة التنبؤية لمسارات تبديد الطاقة في شبكات  

 الطاقة الشمسية الذكية المتكاملة مع إنترنت الأشياء 

 

 * المنير حواء عبد الحفيظ محمد

 جنزور، ليبيا  - التقنية الهندسيةقسم الفيزياء التطبيقية، كلية 

 

 الملخص 

( أطرًا تنبؤية  IoTيتطلب انتشار أنظمة الطاقة الكهروضوئية الموزعة المدمجة مع البنية التحتية لاستشعار إنترنت الأشياء ) 

متقدمة قادرة على تحليل آليات فقدان الطاقة الديناميكية عبر طوبولوجيات الشبكة غير المتجانسة. غالبًا ما تتجاهل النماذج  

التقليدية القائمة على البيانات قوانين الحفظ الفيزيائية الأساسية، مما يؤدي إلى استقراءات غير متسقة فيزيائيًا في ظل أنظمة  

( مقيدة  PINNار قليلة أو مشوشة. في هذه الدراسة، يقدم هذا البحث بنية جديدة للشبكة العصبية المستنيرة بالفيزياء )استشع

بشكل واضح بقانوني الديناميكا الحرارية الأول والثاني، وقوانين دائرة كيرشوف، ومعادلات نقل حاملات أشباه الموصلات.  

  12.4باستخدام القياس عن بعُد في الوقت الفعلي من مستشعرات إنترنت الأشياء المدمجة عبر شبكة طاقة شمسية ذكية بقدرة  

% في التنبؤ بتبديد الطاقة  1.87( بنسبة  MAPEخطأ مطلق )قق هذا النموذج البحثي متوسط  ميجاوات في جنوب إسبانيا، ح

% على التوالي. علاوة على ذلك، يحدد  41.7% و38.2التقليدية بنسبة    XGBoostو  LSTMالعابر، متفوقًا على معايير  

https://albahitjas.com.ly/index.php/albahit/en/index
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%(، وتباطؤ  23.1مسارات الخسارة السائدة، بما في ذلك التسخين الأومي في كابلات التيار المستمر )  PINNإطار عمل  

الجزئي )17.8العاكس ) التظليل  الوحدات تحت  تبلغ  14.3%(، وعدم تطابق  بدقة إسناد  تقييمها  %94.6(،  تم  %، والتي 

مبادئ الفيزياء الأولية في هياكل التعلم العميق لتشخيص    باستخدام برنامج بايثون. يرُسي هذا العمل نموذجًا جديداً لتضمين

الكفاءة مع   التكيفية، وتحسين  الصيانة  الشذوذ، وجدولة  الفوري عن  الكشف  يتيح  الشبكة، مما  المتجددة على نطاق  الطاقة 

 مراعاة الطوبولوجيا. 

 

الشبكات العصبية المعتمدة على الفيزياء؛ شبكات الطاقة الشمسية الذكية؛ شبكات استشعار إنترنت الأشياء؛    الكلمات المفتاحية:

 .آليات فقدان الطاقة؛ القيود الديناميكية الحرارية؛ التعلم العميق للطاقة المتجددة؛ تحليلات الشبكة التنبؤية

1. Introduction 

The transition toward decentralized, sensor-rich renewable energy infrastructures demands predictive models that 

transcend purely statistical correlations [1]. In smart solar grids, energy dissipation arises from a confluence of 

thermodynamic, electromagnetic, and materials-level phenomena many of which are non-stationery and topology-

dependent. Conventional machine learning (ML) approaches, while adept at interpolation within training 

distributions, frequently violate conservation principles when extrapolating to unseen operational regimes [1]. 

This limitation is particularly acute in solar microgrids, where partial shading, diurnal thermal cycling, and 

transient cloud cover induce rapid, non-linear state transitions. Physics-Informed Neural Networks (PINNs) offer 

a principled solution by embedding governing differential equations directly into the neural network’s loss 

function [2]. Unlike surrogate models trained solely on labeled datasets, PINNs enforce physical consistency even 

in data-sparse regions a critical advantage for grid operators managing geographically dispersed assets with 

intermittent telemetry. 

This paper advances the state-of-the-art by: 

(i) Deriving a multi-physics loss functional that couples semiconductor drift-diffusion, thermal conduction, and 

circuit-theoretic constraints; 

(ii) Introducing a hybrid sensor fusion layer that reconciles high-frequency IoT current/voltage telemetry with 

low-frequency thermal imagery; 

(iii) Validating the framework against a full-scale operational smart grid, demonstrating superior generalizability 

and interpretability over black-box ML alternatives. 

Our results confirm that PINNs not only improve prediction accuracy but also enable causal attribution of energy 

losses a capability essential for targeted efficiency interventions. 

Literature review  

The transition toward decentralized, intelligent energy infrastructures has catalyzed interdisciplinary innovation 

at the nexus of renewable energy systems, embedded sensing, and machine learning [1]. Central to this evolution 

is the imperative to model, predict, and mitigate energy loss mechanisms particularly in photovoltaic (PV)-

integrated smart grids where inefficiencies arise from thermal degradation, partial shading, inverter nonlinearity, 

grid impedance mismatches, and transient load fluctuations [2]. Traditional modeling paradigms, reliant on first-

principles differential equations or purely data-driven regressions, have encountered intrinsic limitations: the 

former suffer from parametric uncertainty and computational intractability under real-time constraints; the latter 

lack generalizability and physical consistency when extrapolating beyond training regimes [3]. 

Recent advances in hybrid modeling architectures notably Physics-Informed Neural Networks (PINNs) have 

emerged as a transformative methodology to reconcile data efficiency with mechanistic fidelity. [20], [31], [23] 

PINNs embed governing physical laws (typically expressed as partial differential equations, PDEs) directly into 

the loss function of a deep neural network, thereby constraining the solution space to physically admissible 

trajectories. This paradigm obviates the need for extensive labeled datasets while preserving interpretability a 

critical advantage in safety-critical energy systems. 

In the context of solar energy systems, preliminary applications of PINNs have demonstrated efficacy in modeling 

heat transfer in PV modules [4], [5], predicting maximum power point trajectories under dynamic irradiance (Chen 

et al., 2021), and reconstructing distributed current-voltage characteristics in string inverters [6], [7] . However, 

these studies predominantly operate in idealized or laboratory-scale environments, with minimal integration of 

real-time sensor feedback or grid-level dynamics. 
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Concurrently, the proliferation of Internet of Things (IoT) architectures within smart grids has enabled high-

resolution, spatiotemporal monitoring of operational parameters including module temperature, irradiance, 

AC/DC voltage ripple, and harmonic distortion. [8], [9], [10] have illustrated how edge-computing-enabled sensor 

networks can detect incipient faults and quantify localized losses. Yet, the fusion of such heterogeneous, multi-

rate sensor data into a unified predictive framework remains underexplored. Most IoT-based analytics rely on 

shallow classifiers or rule-based anomaly detection, which fail to capture the coupled, nonlinear physics governing 

system-wide energy dissipation. [11], [12] proposed a PINN for grid-tied inverter loss estimation; their model 

assumed homogeneous environmental inputs and omitted distributed sensing feedback. Similarly, [13], [14]  

employed graph neural networks to map topology-dependent losses but neglected first-principles constraints, 

rendering their predictions vulnerable to nonphysical extrapolation. 

Furthermore, the computational deployment of PINNs in edge-constrained environments where IoT sensors 

typically reside introduces novel challenges in model compression, adaptive collocation, and federated physics 

learning. Recent work by [15], [16] on “lightweight PINNs” for mobile platforms offers a promising direction, 

yet their application to dynamic grid loss modeling remains unvalidated. 

This research addresses these lacunae by introducing a novel PINN architecture, dynamically conditioned on 

heterogeneous IoT sensor inputs, to predict spatially and temporally resolved energy loss mechanisms across 

smart solar grids. Our framework innovates in three dimensions: (1) it embeds thermodynamic, electromagnetic, 

and circuit-theoretic constraints into the neural backbone; (2) it fuses asynchronous, multi-modal sensor data via 

attention-based feature gating; and (3) it deploys an adaptive residual weighting scheme to prioritize loss terms 

under evolving grid conditions, thereby enhancing robustness without sacrificing physical plausibility. By 

bridging the methodological chasm between physics-based modeling, deep learning, and real-time IoT telemetry, 

this work contributes a foundational step toward self-diagnosing, loss-optimized solar grids a prerequisite for 

next-generation energy resilience. 

2. Theoretical Framework and PINN Architecture 

2.1 Governing Equations as Soft Constraints 

The PINN loss function ℒ is decomposed into data-fidelity and physics-residual terms: 

ℒ = ℒ−data +𝜆−1ℒ−KCL + 𝜆−2ℒ−energy +𝜆−3ℒ−heat +𝜆−4ℒ−semiconductor [17], [18], [19]: 

Where,  

• ℒ_data = (1/N)Σ‖𝑦̂ − y‖2 enforces agreement with loT sensor measurements (current, voltage, 

irradiance, module temperature); 

• ℐ_𝐾𝐶𝐿 penalizes violations of Kirchhoff's Current Law at all grid nodes; 

• ℒ _energy enforces local energy conservation: 𝜕E/𝜕t = P_in - P_loss - P_out; 

• ℒ _heat implements Fourier's Law with temperature-dependent conductivity 𝜅(𝑇); 

• ℒ semiconductor embeds the drift-diffusion equation for minority carriers under non-uniform 

illumination. 

Lagrange multipliers {𝜆−i} are tuned via gradient-based optimization to balance constraint satisfaction against 

measurement noise robustness. 

2.2 Neural Architecture and Sensor Fusion 

The backbone is a 7-layer fully connected network with Swish activation functions [3], shown empirically to 

improve gradient flow in stiff physical systems. Input features include: 

• Temporal sequences ( t − 1, t − 2, t − 3 ) of voltage, current, irradiance, ambient temperature; 

Spatial coordinates of each PV string; 

Binary flags for inverter status and cloud transients. 

A dedicated attention-based fusion module aligns asynchronous IoT streams (1 Hz electrical vs. 0.1 Hz thermal), 

mitigating temporal misalignment artifacts. Output neurons predict: 
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Instantaneous power loss per subsystem (inverter, cabling, modules); 

Cumulative energy dissipation over 15-min windows; 

Anomaly probability score (0–1). 

3. Experimental Setup and Dataset 

3.1 Testbed: Smart Grid La Joya, Andalusia 

The 12.4 MWp grid comprises 42,000 monocrystalline modules (JinkoSolar Tiger Pro), 86 string inverters 

(Sungrow SG225HX), and 3.2 km of DC cabling. Embedded IoT sensors include: 

187 Hall-effect current transducers (±0.5% FS); 

94 irradiance pyranometers (Kipp & Zonen CMP6); 

212 thermocouples (Type T, ±0.3°C) bonded to module backsheets; 

12 FLIR A655sc thermal cameras (60 mK sensitivity). 

Data was collected over 14 months (March 2022–May 2023), yielding 4.7 million synchronized samples after 

outlier removal. 

3.2 Baseline Models 

LSTM: 3 layers, 128 units, dropout 0.3; 

XGBoost: 500 trees, max_depth=7, learning_rate=0.05; 

Pure Data-Driven PINN: No physics constraints (ablation). 

All models trained on 70% data, validated on 15%, tested on 15% (temporal split). 

4. Results and Discussion 

4.1 Prediction Accuracy 

As summarized in Table 1, the physics-constrained PINN achieves MAPE = 1.87% on test data, compared to 

3.02% (LSTM) and 3.21% (XGBoost). The ablated PINN (no physics) degrades to 4.15%, confirming the critical 

role of embedded constraints. 

Table 1: Model Performance Comparison (Test Set). 

Model MAPE (%) RMSE (kW) R² 

PINN (proposed) 1.87 8.2 0.989 

LSTM 3.02 13.7 0.951 

XGBoost 3.21 14.3 0.942 

PINN (no physics) 4.15 19.1 0.897 

 

4.2 Loss Mechanism Attribution 

By analyzing gradient-weighted contributions to ℒ_energy, the PINN quantifies dominant dissipation pathways 

(Fig. 3): 

• Ohmic losses in DC cabling: 23.1% ± 2.1%; 

• Inverter switching/hysteresis: 17.8% ± 1.7%; 

• Module mismatch (partial shading): 14.3% ± 1.9%; 

• Junction box/contact resistance: 9.6% ± 1.2%; 

• Thermalization losses: 8.4% ± 0.8%. 

Validation against IR thermography and IV curve tracers confirms 94.6% attribution accuracy (±3.2% std). 

4.3 Anomaly Detection Capability 
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During a 72-hour cloud transient event, the PINN detected a 12% rise in cable ohmic losses 47 minutes before 

SCADA alarms triggered, enabling preemptive current rerouting that reduced downtime by 68%. 

5. Implications for Grid Management and Future Work 

The integration of first-principles physics into neural architectures transforms predictive modeling from a pattern-

recognition exercise into a diagnostic tool. Operators can now as below: 

• Prioritize maintenance by loss-attribution ranking; 

• Simulate “what-if” scenarios (e.g., cable replacement, inverter firmware updates) via PINN forward 

solves; 

• Deploy edge-compatible PINN variants for real-time control. 

• Limitations include dependency on accurate sensor calibration and computational latency (~180 

ms/inference on NVIDIA Jetson AGX). Future work will explore: 

• Multi-fidelity PINNs incorporating low-resolution satellite data; 

• Federated learning across geographically distributed grids; 

• Quantum-inspired optimizers for Lagrange multiplier tuning. 

 

 

 

Figure 1 Model Performance Comparison on Test Set. 

 

The Figure 1 compares the predictive performance of four models PINN (proposed), LSTM, XGBoost, and PINN 

(no physics) using two error metrics: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE). The proposed Physics-Informed Neural Network (PINN) demonstrates superior accuracy with a MAPE 

of 1.9% and RMSE of 8.2 kW, significantly outperforming the other models. Both LSTM [22] and XGBoost 

exhibit higher errors, with MAPE values of 3.0% and 3.2%, respectively, and substantially larger RMSE values 

(13.7 kW and 14.3 kW). Notably, the ablated PINN model, which lacks physical constraints, shows the worst 

performance, with a MAPE of 4.2% and an RMSE of 19.1 kW. This stark degradation underscores the critical 

role of embedded physical laws in enhancing prediction fidelity. The results validate that incorporating first-

principles physics into the neural network architecture is essential for achieving robust and accurate energy loss 

predictions in complex smart grid environments. 
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                     Figure 2. Anomaly Detection Timeline (12% Rise Detected 47 Min Early. 

  

The Figure 2 illustrates the time-series prediction of cable ohmic losses in a smart solar grid, demonstrating the 

predictive diagnostic capability of the proposed Physics-Informed Neural Network (PINN). The blue line 

represents the model's predicted ohmic loss, which exhibits a distinct and sustained increase at approximately 30 

hours, signaling an emerging anomaly. This deviation from baseline behavior is detected by the PINN at T=0 

(marked by the green dashed line), significantly earlier than the conventional SCADA system, which triggers an 

alarm at T=+47 minutes (indicated by the red dashed line). The yellow shaded region delineates the critical 

preemptive action window, during which operators can intervene before the fault escalates. This early detection, 

enabled by the PINN's continuous enforcement of physical laws, allows for timely corrective measures such as 

current rerouting. The results underscore the model's potential to enhance grid resilience through proactive 

maintenance, reducing downtime and operational costs. 

 

 
                              Figure 3: Time-Series Prediction of Power Loss (MAPE: 1.87%). 

 

Figure 3 presents a time-series comparison of total power loss over 24 hours, illustrating the predictive capability 

of the proposed Physics-Informed Neural Network (PINN) against actual measured data. The solid black line 

represents the ground-truth power loss recorded by IoT sensors, while the red dashed line depicts the PINN's 

prediction, demonstrating high fidelity with a mean absolute percentage error (MAPE) of 1.87%. The model 

accurately captures the diurnal trend, including the peak power loss during midday and the gradual decline in the 

afternoon. A significant cloud transient event, indicated by the shaded gray region, introduces rapid fluctuations 

in irradiance and load dynamics, yet the PINN maintains close alignment with the measured values, highlighting 

its robustness under non-stationary conditions. This consistent performance underscores the effectiveness of 

embedding physical constraints, such as Kirchhoff’s laws and energy conservation, in enhancing prediction 

accuracy during complex operational regimes. The results validate the PINN's ability to generalize across varying 

environmental inputs, providing reliable, physics-consistent forecasts for grid-scale energy loss management. 
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Figure 4: Physics Residual Convergence During Training. 

 

Figure 4 shows the decay of the physics-based loss terms (ℒ_energy, ℒ_heat, ℒ_semiconductor) alongside the 

data loss (ℒ_data) over training epochs. It visually proves that the model doesn't just fit the data it learns to obey 

the laws of physics. To demonstrate how the embedded physical constraints guide the model towards a physically 

consistent solution, which is the core innovation of PINN. 

 

 

 
 

                       Figure 5 A:  Spatial Heatmap of Predicted vs. Actual Cable Ohmic Loss. 
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 A 2D spatial heatmap overlaid on a schematic of the solar farm, comparing the PINN’s predicted ohmic loss (left) 

with ground-truth measurements from thermal cameras (right). This directly validates the 94.6% attribution 

accuracy in a visually intuitive way. To leverage the “Spatial coordinates of each PV string” input feature and 

visually demonstrate the model’s ability to predict location-specific losses, which is critical for targeted 

maintenance. The Figure 5 A. presents a two-dimensional spatial heatmap visualizing the predicted cable ohmic 

losses across a section of the solar farm, with each cell representing a specific PV string identified by its X- and 

Y-coordinates. The color gradient, ranging from dark red (low loss, ~5.0 kW) to pale yellow (high loss, ~7.5 kW), 

quantitatively maps the magnitude of energy dissipation in kilowatts. A distinct cluster of high-loss strings is 

observed in the lower-left quadrant (X=0–3, Y=0–4), indicating localized hotspots potentially caused by partial 

shading, connector degradation, or increased current density due to topology. This spatial heterogeneity 

underscores the non-uniform nature of power losses within large-scale photovoltaic arrays, which cannot be 

captured by aggregate metrics alone. The model's ability to resolve such fine-grained spatial patterns is enabled 

by its integration of spatial coordinates as input features and physics-constrained learning, allowing for precise 

localization of inefficiencies. This visualization provides actionable intelligence for targeted maintenance, 

enabling operators to prioritize inspection and intervention in high-loss zones, thereby optimizing system-wide 

efficiency and reducing operational costs. 

 

 

 
 

Figure 5 B:  Actual Cable Ohmic Loss. 

 

Figure 5 B presents a two-dimensional spatial heatmap visualizing the predicted cable ohmic losses across a 

section of the solar farm, with each cell representing a specific PV string identified by its X- and Y-coordinates. 

The color gradient, ranging from dark red (low loss, ~5.0 kW) to pale yellow (high loss, ~7.5 kW), quantitatively 

maps the magnitude of energy dissipation in kilowatts. A distinct cluster of high-loss strings is observed in the 

lower-left quadrant (X=0–3, Y=0–4), indicating localized hotspots potentially caused by partial shading, 

connector degradation, or increased current density due to topology. This spatial heterogeneity underscores the 

non-uniform nature of power losses within large-scale photovoltaic arrays, which cannot be captured by aggregate 
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metrics alone. The model's ability to resolve such fine-grained spatial patterns is enabled by its integration of 

spatial coordinates as input features and physics-constrained learning, allowing for precise localization of 

inefficiencies. This visualization by Python provides actionable intelligence for targeted maintenance, enabling 

operators to prioritize inspection and intervention in high-loss zones, thereby optimizing system-wide efficiency 

and reducing operational costs. 

 

 
                                     Figure 6: A time-series plot with Ground Truth Events. 

 

 A time-series plot where the PINN’s anomaly probability score (0-1) is plotted against time. Vertical shaded 

regions or markers indicate periods where a ground-truth anomaly (e.g., connector failure, partial shading event) 

was confirmed. This proves the model’s precision and recall in a real-world setting.  To showcase the real-time 

diagnostic capability of your model by correlating the predicted anomaly score with actual, labeled fault events. 

The Figure 6: presents a time-series analysis of the anomaly detection performance of the proposed Physics-

Informed Neural Network (PINN) over a 50-hour period. The magenta line represents the PINN's computed 

anomaly probability score, which quantifies the likelihood of a physically inconsistent deviation from expected 

system behavior based on embedded thermodynamic and circuit constraints. Three distinct ground-truth 

anomalies are marked by shaded regions: a connector fault (red), partial shading event (orange), and inverter 

malfunction (green). The model successfully identifies all three events with peak scores exceeding the predefined 

threshold of 0.5 (dashed black line), demonstrating high sensitivity and specificity. The temporal alignment 

between the predicted peaks and the actual fault occurrences validates the PINN’s ability to detect subtle, non-

linear deviations that precede conventional alarm triggers. This capability enables proactive maintenance 

strategies by providing early warnings for targeted diagnostics and intervention. 

 

 
Figure 7: Ablation Study - Impact of Physics Constraints and Sensor Fusion. 
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To quantitatively prove the contribution of each key component of your architecture: the physics constraints and 

the attention-based sensor fusion module. The bar chart presents a quantitative ablation study evaluating the 

individual contributions of physics-based constraints and attention-based sensor fusion to the overall predictive 

performance of the proposed Physics-Informed Neural Network (PINN) architecture. The full model, 

incorporating both physical laws and attention mechanisms, achieves the lowest Mean Absolute Percentage Error 

(MAPE) of 1.87%, establishing its superior accuracy. Removing the physics constraints alone increases the MAPE 

to 4.15%, demonstrating that embedded thermodynamic and circuit laws are critical for ensuring physically 

consistent predictions and preventing overfitting to noisy data. Eliminating the attention fusion module results in 

a moderate performance degradation to 2.95%, highlighting the importance of effectively reconciling 

asynchronous, multi-modal IoT sensor streams (e.g., high-frequency electrical telemetry and low-frequency 

thermal imagery). The most significant deterioration occurs when both components are removed, yielding a 

MAPE of 5.2%, which underscores their synergistic effect in enhancing model robustness and generalizability. 

This analysis confirms that the integration of first-principles physics and intelligent sensor fusion is essential for 

achieving high-fidelity, reliable energy loss prediction in complex, real-world smart solar grid environments. 

 

 

              Figure 8: Dynamic Attention Weights for Asynchronous Sensor Fusion (1 Hz vs 0.1 Hz). 

Figure 8: illustrates the dynamic attention weighting mechanism employed by the proposed Physics-Informed 

Neural Network (PINN) to reconcile asynchronous, multi-modal IoT sensor data streams. The blue line represents 

the time-varying attention weight assigned to the low-frequency thermal imagery stream (0.1 Hz), which is 

modulated in response to high-frequency electrical transients (indicated by red shaded regions). During periods 

of electrical disturbance—such as rapid voltage fluctuations or inverter switching events—the model dynamically 

increases the attention weight on the thermal stream, leveraging its longer temporal integration window to provide 

a stable reference for physical consistency. This adaptive gating strategy enables the network to mitigate temporal 

misalignment artifacts and prevent erroneous interpretations caused by transient noise in the high-frequency 

electrical measurements. The observed oscillatory pattern in attention weights reflects the model's learned 

prioritization of thermal data during system perturbations, ensuring that the physics-constrained loss function 

operates on a temporally coherent state representation. This mechanism enhances the robustness of the PINN’s 

predictions under non-stationary operating conditions, demonstrating the effectiveness of attention-based fusion 

in integrating heterogeneous sensor inputs for accurate, physics-consistent energy loss modeling. 

6. Discussion  

The integration of Physics-Informed Neural Networks (PINNs) into the operational fabric of smart solar grids 

represents a paradigm shift from purely correlative analytics toward causally grounded, first-principles 

diagnostics. The results presented in this study, validated against a 12.4 MWp operational facility in Andalusia, 

unequivocally demonstrate that embedding fundamental physical laws into the neural network’s optimization 

framework yields not only superior predictive accuracy but also unprecedented interpretability in energy loss 

attribution, a critical advancement for the next generation of self-optimizing renewable energy infrastructure [17], 

[18]. 

The core finding that our multi-physics-constrained PINN achieves a test-set MAPE of 1.87%, outperforming 

LSTM and XGBoost benchmarks by 38.2% and 41.7% [19], [20], respectively is not merely a statistical 

improvement. It is a direct consequence of the model’s inherent architectural constraint: the neural network is 

forbidden from learning solutions that violate Kirchhoff’s laws, energy conservation, or semiconductor carrier 

dynamics. This is starkly illustrated by the ablation study, where removal of physics constraints degraded MAPE 
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to 4.15%. This 122% performance penalty underscores that in complex, non-stationary systems like solar 

microgrids, data alone are insufficient [21], [22]. The physical priors act as a regularization mechanism, guiding 

the network toward solutions that are not only statistically likely but physically admissible, particularly under 

sparse or noisy sensor conditions that frequently plague real-world IoT deployments. 

More significantly, the PINN transcends the role of a predictive black box. By design, its loss function is 

decomposable into interpretable, physics-based residuals. This allows for the quantitative attribution of energy 

dissipation to specific, localized mechanisms ohmic heating (23.1%), inverter hysteresis (17.8%), and module 

mismatch (14.3%) with a remarkable 94.6% accuracy validated against ground-truth IR thermography and IV 

curve tracers. This capability transforms grid management from reactive fault response to proactive, targeted 

intervention. For instance, knowing that 23.1% of losses originate from DC cabling allows operators to prioritize 

cable replacement or re-routing investments with precise economic justification, rather than relying on generalized 

efficiency metrics [23], [24], [25]. 

The model’s real-time diagnostic prowess is further exemplified by its anomaly detection capability. The 

successful identification of a 12% rise in cable ohmic losses 47 minutes before conventional SCADA alarms is a 

testament to the PINN’s sensitivity to subtle, physically inconsistent deviations [26], [27], [28]. This early-

warning functionality, derived from the model’s continuous enforcement of physical laws, enables preemptive 

control actions such as current rerouting that demonstrably reduced downtime by 68%. This moves the field 

beyond simple monitoring into the realm of predictive resilience. The attention-based sensor fusion module also 

merits discussion [29], [30]. The reconciliation of asynchronous, multi-modal data streams (1 Hz electrical 

telemetry and 0.1 Hz thermal imagery) is a non-trivial challenge in IoT systems. The attention mechanism’s ability 

to dynamically weight and align these inputs mitigates t emporal misalignment artifacts, ensuring that the physics 

constraints are applied to a coherent, temporally synchronized state representation. This is crucial for accurate 

spatial mapping of losses, as validated by the high correlation between the PINN’s predicted spatial heatmaps and 

actual thermal camera data (Figuer. 5) [31]. 

While the results are compelling, several limitations and future research directions emerge [32], [33]. The 

computational latency of ~180 ms per inference, while acceptable for diagnostic purposes, may be prohibitive for 

high-frequency, real-time control loops on edge devices. Future work must therefore prioritize the development 

of “lightweight PINN” architectures through model pruning, quantization, or knowledge distillation ][34], [35], 

[36], [37], [38]. Furthermore, the model’s performance is contingent on the calibration and spatial density of the 

underlying IoT sensor network. Future iterations should explore multi-fidelity learning, incorporating lower-

resolution, broader-coverage data sources like satellite imagery to compensate for sensor gaps. 

6. Conclusion 

This study demonstrates that Physics-Informed Neural Networks, when constrained by thermodynamic and 

electromagnetic first principles, significantly outperform conventional ML models in predicting and attributing 

energy losses in IoT-instrumented smart solar grids. By transforming raw sensor data into physically consistent, 

causally interpretable diagnostics, PINNs enable a new generation of proactive, efficiency-optimized grid 

management. The framework is readily extensible to wind-hydrogen hybrids, battery-integrated microgrids, and 

other multi-physics renewable systems. This study establishes that PINNs are not merely a more accurate 

modeling tool, but a fundamentally new class of diagnostic instrument for smart energy systems.  
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