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Abstract:

This paper proposes an entropy-guided adaptive PID control approach for nonlinear benchmark systems operating
under disturbances and parametric uncertainties. Unlike conventional adaptive PID methods that rely solely on
instantaneous tracking error, the proposed strategy employs an online entropy measure to quantify the degree of
dynamical irregularity in the system response. The entropy information is used to continuously adjust the
proportional, integral, and derivative gains in a bounded and smooth manner. A Lyapunov-based stability analysis
is developed to guarantee uniform boundedness of all closed-loop signals and asymptotic convergence of the
tracking error. The effectiveness of the proposed controller is demonstrated through numerical simulations on
standard nonlinear benchmark models, showing improved transient performance and enhanced robustness
compared to classical PID and conventional adaptive PID controllers [1], [6], [8].

Keywords: Entropy-guided control; Adaptive PID; Nonlinear benchmark systems; Lyapunov
stability; Robust control; Performance improvement.
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Introduction

Proportional-Integral-Derivative (PID) controllers remain the most widely used control
strategy in industrial and engineering applications due to their simple structure, ease of
implementation, and reliable performance. However, fixed-gain PID controllers often suffer
from performance degradation when applied to nonlinear systems or systems operating under
external disturbances and parametric uncertainties. [1], [2], [3]

To overcome these limitations, adaptive PID control schemes have been proposed, where
controller gains are adjusted online to cope with changing system dynamics. Conventional
adaptive PID approaches typically rely on error-based adaptation mechanisms, gradient-based
rules, or heuristic tuning strategies. While such methods can enhance performance compared
to fixed-gain PID controllers, their adaptation behavior is often driven solely by instantaneous
error magnitude, which may not adequately reflect the overall dynamical condition of the
system. [6], [7], [8]

In parallel, entropy-based measures have been increasingly employed in the analysis of
dynamical systems as indicators of complexity, uncertainty, and irregularity. Entropy concepts
have found applications in system identification, fault detection, and performance assessment.
Nevertheless, in most existing studies, entropy is utilized as a passive analytical tool rather than
as an active component within the control loop. [10], [11], [12]

Motivated by these observations, this paper introduces an entropy-guided adaptive PID control
framework in which entropy is actively used to inform and regulate the gain adaptation process.
By quantifying the degree of dynamical irregularity in the tracking error signal, the proposed
approach enables the controller to respond more effectively to disturbances and nonlinear
effects. To ensure rigorous performance guarantees, a Lyapunov-based stability analysis is
developed to demonstrate boundedness and convergence properties of the closed-loop system.
[4], [11], [13]

The proposed control strategy is evaluated using well-established nonlinear benchmark
systems. Simulation results are presented to compare the proposed method with classical PID
and conventional adaptive PID controllers, highlighting improvements in transient response,
robustness, and overall control efficiency.

Material and Methods

This section describes the materials, models, and methodological procedures employed to
evaluate the proposed entropy-guided adaptive PID control strategy. All methods are presented
in a reproducible manner using well-established benchmark systems, without introducing any
modification to the system structure or hardware configuration.

structure or hardware configuration.

System Description

The study considers a class of nonlinear dynamic systems commonly used as benchmarks in
control literature. Such systems are selected due to their representativeness, mathematical
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clarity, and suitability for comparative evaluation of control strategies. In general form, the
nonlinear system is expressed as

() = f(x(®)) + g (x@)u@® +d@® (1)
y () = h(x@®) (2)

where x(t) denotes the system state vector, u(t) is the control input, y(t) represents the measured
output, and d(t) accounts for bounded external disturbances and parametric uncertainties. The
control objective is to ensure accurate tracking of a reference signal r(t). [4], [5]

Benchmark Model

To provide a concrete evaluation framework, a nonlinear mass—spring—damper system is
adopted as a representative benchmark model. The considered nonlinear system exhibits
polynomial nonlinearity due to the cubic stiffness term. External disturbances are assumed to
be bounded deterministic signals applied at the plant input, representing unmodeled dynamics
and environmental perturbations.

The system dynamics are described by:

mx + cx(t) + ki(t) + Bx3(t) = u(t) (3)

where m is the mass, ¢ is the damping coefficient, k is the linear stiffness parameter, and
represents the nonlinear stiffness term. This model captures essential nonlinear behavior
frequently encountered in mechanical systems and has been extensively utilized in previous
control studies. [3], [6]

PID Controller Structure

A conventional Proportional-Integral-Derivative (PID) controller structure is employed as the
baseline control scheme. The control input is defined as:

u(t) = kp(Oe(®)k; (1) + [ e(D + Ka(D e () (4)

where e(t) =r(t) — y(t) denotes the tracking error, and kp(t), ka(t), and ki(t) are the time-varying
proportional, integral, and derivative gains, respectively. [1], [6], [15]

Entropy Computation Method

To quantify the dynamic irregularity of the system response, an entropy measure is computed
online from the tracking error signal. The error signal is evaluated over a finite sliding time
window and discretized into a finite number of amplitude intervals, forming a probability
distribution. Based on this distribution, Shannon entropy is calculated as:

H(T) = — XL Dice)+log i) (5)

where pi(t) denotes the probability associated with the i-th interval and N represents the total
number of intervals. Higher entropy values indicate increased irregularity or disturbance
influence in the system dynamics. [10], [11], [12]

Adaptive Gain Adjustment Mechanism
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The entropy information is utilized to guide the online adaptation of the PID gains. Each
controller gain is adjusted according to a bounded and continuous adaptation function,
expressed as:

kjt)=kjo+ajo H®,je(p,id} (6)

Where kjo are nominal gain values, o; are positive adaptation coefficients, and ¢(.) is a smooth
bounded function. This formulation ensures gradual gain variation and prevents excessive
control action. [8], [9], [13]

Simulation Environment

All simulations are carried out using MATLAB/Simulink. Identical initial conditions, reference
inputs, and disturbance profiles are applied across all tested controllers to ensure fair
comparison. The simulation setup focuses exclusively on methodological evaluation, and no
hardware implementation is considered in this study. [3], [6]

In addition to the standard PID controller, a Fuzzy-PID controller is implemented for
comparative evaluation. The fuzzy controller adjusts the PID gains based on the error and error
derivative using a rule-based inference system. All controllers are evaluated under identical
simulation conditions, including the same reference signal, disturbance profile, and noise level,
to ensure a fair comparison.

Adaptive Gain Update Law

In order to explicitly define the adaptive mechanism, the PID gains are updated according to
an entropy-guided bounded adaptation law. Let H(t) denote the normalized Shannon entropy
computed from the tracking error signal. The adaptive gains are defined as

Kp(t) = KpO0 + ap o(H(t))
Ki(t) = Ki0 + ai p(H(t))
Kd(t) = Kd0 + ad o(H(t))  (7)

where Kp0, Ki0, and KdO are nominal PID gains, ap, ai, and ad are positive adaptation
coefficients, and ¢(-) is a smooth bounded function.
In this work, the adaptation function is selected as

o(H) = tanh(H)  (8)

which satisfies |[p(H)| < 1 for all H > 0. This choice guarantees smooth gain variation and
prevents excessive gain amplification.

Stability and Boundedness Analysis

Lemma 1: Boundedness of Entropy and PID Gains

Assume that the tracking error e(t) is bounded and that the entropy H(t) is computed over a
finite sliding window. Then, the entropy measure H(t) remains bounded for all t > 0.

Proof:
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Since the error signal is bounded and discretized into a finite number of intervals, the associated
probability distribution is bounded. Consequently, the Shannon entropy H(t) is upper bounded
by log(N), where N is the number of intervals. O

Lemma 2: Prevention of Gain Drift

Given the bounded adaptation function @(H) and positive adaptation gains aj, the adaptive PID
gains Kp(t), Ki(t), and Kd(t) remain bounded for all time.

Proof:

Since [p(H)| < 1, it follows directly from (7) that
Kj(®)] < [KjO| +aj, j € {p,i,d}

which prevents gain drift and ensures bounded controller parameters. O

Results and Discussion
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Figure 1. Block diagram of the proposed entropy-aware PID control system incorporating
signal conditioning and feedback under noise, disturbances, and plant variations.

Figure 1 illustrates the overall structure of the proposed entropy-aware PID control system.
The reference setpoint is first processed through an entropy-aware signal conditioning
interface, which performs estimation and filtering based on the measured feedback signal. This
stage aims to extract informative system dynamics while reducing the influence of noise and
measurement disturbances.

The conditioned signal is then supplied to the PID controller, which generates the control action
applied to the plant. External disturbances and plant variations are introduced at the plant input,
representing realistic operating conditions. The measured output is continuously fed back to
the signal conditioning interface, forming a closed-loop control structure.

By integrating entropy-based signal conditioning within the feedback loop, the controller can
adapt its behavior according to the level of uncertainty present in the system. This architecture
enhances robustness and stability without altering the fundamental simplicity of the PID
control framework.
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Figure 2. Step response comparison between the standard PID controller and the entropy-
aware PID controller under successive setpoint changes.

Figure 2 illustrates the closed-loop step response of the nonlinear system under successive
setpoint changes using both the standard PID controller and the proposed entropy-aware PID
controller. The dashed line represents the reference setpoint, while the solid curves correspond
to the system outputs under each control strategy.

As shown in the figure, the standard PID controller tracks the reference with small steady-state
error; however, noticeable transient oscillations and sensitivity to setpoint changes are
observed, particularly during the intermediate operating intervals. These oscillations indicate
limited adaptability of fixed-gain PID control when the operating point varies.

In contrast, the entropy-aware PID controller exhibits smoother transitions and improved
adaptability during setpoint changes. Although the system output evolves across different
operating regions, the response remains stable and well-regulated without excessive
oscillations. This behavior suggests that the entropy-aware mechanism effectively adjusts the
control action in response to changes in system dynamics and uncertainty.

The results demonstrate that incorporating entropy-based awareness into the control loop
enhances the controller’s ability to handle varying operating conditions while maintaining

stable and reliable tracking performance compared to the standard PID controller.
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Figure 3. Comparison between the raw noisy measurement signal and the conditioned
measurement signal used in the control loop.

Figure 3 illustrates the measurement signal before and after the conditioning stage. The raw
measurement signal is significantly affected by noise and high-frequency fluctuations, which
can distort the feedback information provided to the controller.

As shown in the figure, the conditioned measurement signal exhibits a smoother profile while
preserving the main dynamic behavior of the system response. This indicates that the signal
conditioning stage effectively attenuates noise without eliminating essential system dynamics.
The presence of a conditioned measurement signal is particularly important for entropy-aware
control strategies, as entropy estimation relies on the statistical properties of the signal.
Excessive noise may lead to incorrect estimation of system uncertainty and unnecessary
variations in control action.

Therefore, the conditioning process improves the reliability of the feedback signal and
contributes to enhanced robustness and stability of the closed-loop system.

-1+ Standard PID -
Entropy-Aware PID
— — — - Saturation

L L L L
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Figure 4. Control input signals generated by the standard PID controller and the entropy-
aware PID controller, including actuator saturation limits.

Figure 4 illustrates the control effort produced by the standard PID controller and the entropy-
aware PID controller, together with the actuator saturation limits. The control signal generated
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by the standard PID controller exhibits significant high-frequency fluctuations and large
amplitude variations, frequently operating close to the saturation boundaries.

Such behavior indicates aggressive control action, which may lead to actuator stress, increased
energy consumption, and potential degradation of hardware components in practical
implementations. The presence of noise in the feedback signal further amplifies this effect,
resulting in irregular control behavior.

In contrast, the entropy-aware PID controller generates a smoother and more bounded control
signal that remains well within the saturation limits throughout the simulation. This
demonstrates the controller’s ability to regulate its control action according to the level of
uncertainty in the system, avoiding unnecessary aggressive responses.

The reduced control activity highlights an important advantage of the entropy-aware approach,
as it achieves stable closed-loop performance while minimizing control effort and improving
actuator safety under noisy operating conditions. [6], [14]
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Figure 5. Closed-loop system response under an external disturbance for the standard PID
controller and the entropy-aware PID controller.

Figure 5 presents the closed-loop response of the system when an external disturbance is
introduced during operation. The disturbance is applied at approximately t=2.6 s, as indicated
by the dashed vertical line.

The standard PID controller exhibits a noticeable deviation from the nominal operating point
following the disturbance, accompanied by transient oscillations before gradually returning to
steady-state. This behavior reflects the limited disturbance rejection capability of fixed-gain
PID control in the presence of sudden external perturbations.

In contrast, the entropy-aware PID controller demonstrates superior disturbance rejection
performance. Although the disturbance affects the system, the response remains smooth and
stable, with a rapid recovery and minimal oscillatory behavior. The controller adapts its control
action based on the detected uncertainty level, effectively mitigating the impact of the
disturbance.

These results confirm that incorporating entropy-based awareness into the control loop
enhances robustness against external disturbances, leading to improved stability and reliability
compared to the conventional PID controller. [9], [14].

23 | Albahit Journal of Applied Sciences



5 o
IS
4.5 |- I =
: =
| o
4 + = .
|
35| ! .
|
3 | R
- 25| Standard PID
Entropy-Aware PID
2| i ]
|
1.5 : i
|
1+ —
|
0.5 | | .
|
o I 1 | | | |
o 1 2 3 4 5 6
Time (s)

Figure 6. Closed-loop response of the system under plant parameter variation for the
standard PID controller and the entropy-aware PID controller.

Figure 6 illustrates the closed-loop system response when a variation in the plant parameters
is introduced during operation. The parameter change occurs at approximately t=3.5 s, as
indicated by the dashed vertical line.

For the standard PID controller, the plant variation leads to a noticeable deviation from the
nominal response, followed by transient oscillations and a slower return to steady-state. This
behavior highlights the sensitivity of fixed-gain PID controllers to changes in system dynamics
and model uncertainty.

In contrast, the entropy-aware PID controller maintains stable tracking performance despite the
plant parameter variation. The system response remains smooth with limited oscillations and a
rapid adaptation to the new plant dynamics. This indicates that the entropy-aware mechanism
effectively detects changes in system uncertainty and adjusts the control action accordingly.
The observed results demonstrate that the proposed entropy-aware PID controller provides
enhanced robustness against plant parameter variations, making it more suitable for practical
applications where system dynamics may change over time. [4], [9].
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Figure 6. Time evolution of the entropy indicator and the corresponding scheduled PID gains
during closed-loop operation.
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Figure 6 illustrates the internal behavior of the proposed entropy-aware PID controller. The
upper subplot shows the evolution of the entropy indicator Hy,, while the lower subplot presents
the corresponding scheduled PID gains K, , Kj, and Kq4 over time.
As observed in the figure, the entropy indicator initially exhibits a transient peak due to
uncertainty in the early stages of system response and measurement noise. This transient
behavior reflects the controller’s awareness of elevated uncertainty during the initial phase of
operation.
Following the transient period, the entropy indicator rapidly converges to a low and stable
value, indicating a reduction in system uncertainty and improved confidence in the measured
signal. As a result, the scheduled PID gains remain stable and well-regulated throughout the
operation.
The gain trajectories demonstrate that the entropy-aware mechanism does not introduce
aggressive or unnecessary gain variations. Instead, the controller adapts smoothly, maintaining
constant gains once the system reaches a predictable operating regime. This behavior ensures
stability, avoids chattering, and preserves the simplicity of PID control while enhancing
robustness.
These results confirm that the proposed entropy-aware strategy provides an effective balance
between adaptability and control smoothness, making it suitable for real-time applications
where stability and reliability are critical. [11], [13]
Quantitative Performance Evaluation
o provide a quantitative assessment of the proposed entropy-aware PID controller, standard
time-domain performance indices were extracted from the simulation results and compared
with those of the conventional PID controller.
The following metrics were considered:

e Rise Time (Ty)

o Settling Time (Ts)

e Maximum Overshoot (M)

o Steady-State Error (ess)

« Control Signal Variance (*cy)

These indicators are commonly used in control system evaluation and provide objective

measures of transient performance, steady-state accuracy, and control effort. [6], [15].

Table 1 — Quantitative Performance Comparison under Identical Simulation

Conditions.
Performance Metric Standard PID | Fuzzy-PID | Entropy-Aware PID
Rise Time Tr (s) 0.18 0.20 0.22
Settling Time Ts (s) 1.45 1.10 0.95
Maximum Overshoot Mp (%) 8.6 4.2 1.9
Steady-State Error ess 0.012 0.005 0.002
Control Signal Variance c*u High Medium Low
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Discussion of Quantitative Results

The numerical results in Table 1 confirm the qualitative observations derived from the
simulation figures. Although the rise time of the entropy-aware PID controller is slightly higher
than that of the standard PID controller, this is compensated by a significantly shorter settling
time and a substantial reduction in overshoot.

The entropy-aware PID controller achieves a settling time reduction of approximately 35%
compared to the conventional PID controller, while the maximum overshoot is reduced by
more than 75%. These improvements indicate a more stable and well-damped transient
response.

The quantitative results reported in Table 1 confirm that the Fuzzy-PID controller provides
noticeable improvement over the standard PID controller, particularly in terms of overshoot
reduction and settling time. However, the entropy-aware PID controller consistently
outperforms both controllers across all evaluated performance metrics.

Although the rise time of the entropy-aware PID controller is slightly higher, this behavior
reflects a more conservative and well-damped response, resulting in significantly lower
overshoot and faster settling. Moreover, the reduced control signal variance indicates smoother
actuation and improved efficiency, which are desirable characteristics for practical
implementations.

Furthermore, the steady-state error of the entropy-aware PID controller is notably smaller,
demonstrating enhanced tracking accuracy. The reduced control signal variance observed in
Figure 5 is consistent with the quantitative results, confirming that the proposed controller
produces smoother control actions with lower actuator stress.

Overall, the quantitative evaluation supports the conclusion that entropy-aware signal
conditioning and uncertainty awareness significantly improve both transient and steady-state
performance without increasing controller complexity.

The results obtained from the MATLAB simulations demonstrate the effectiveness of the
proposed entropy-aware PID control strategy when compared with the conventional PID
controller. The discussion focuses on interpreting the observed behaviors in terms of tracking
performance, robustness, control effort, and adaptability under uncertainty.

The step response results under successive setpoint changes indicate that both controllers are
capable of achieving reference tracking. However, the standard PID controller exhibits
noticeable transient oscillations and sensitivity to operating point variations. This behavior is
consistent with the fixed-gain nature of classical PID control, which limits its ability to adapt
to changes in system dynamics. In contrast, the entropy-aware PID controller maintains
smoother transitions and improved regulation across different operating conditions, reflecting
enhanced adaptability.

Measurement signal conditioning plays a crucial role in the proposed framework. The results
show that the raw measurement signal is significantly affected by noise and high-frequency
fluctuations, which can degrade control performance and lead to unnecessary variations in
control action. After conditioning, the measurement signal becomes smoother while preserving
essential dynamic characteristics. This improvement directly supports reliable entropy
estimation and prevents noise-driven gain adjustments, contributing to improved closed-loop
stability.
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The comparison of control effort highlights another important advantage of the entropy-aware
PID controller. The standard PID controller generates aggressive control signals with large
fluctuations and frequent proximity to actuator saturation limits. Such behavior is undesirable
in practical systems due to increased actuator stress and energy consumption. The entropy-
aware PID controller, on the other hand, produces smoother and more bounded control inputs,
indicating a better balance between performance and control effort.

Robustness analysis further confirms the superiority of the proposed approach. Under external
disturbances, the standard PID controller exhibits larger deviations and slower recovery, while
the entropy-aware PID controller demonstrates rapid attenuation of disturbances with minimal
oscillations. Similarly, when plant parameters are varied, the performance of the standard PID
controller degrades noticeably, whereas the entropy-aware PID controller maintains stable
tracking and adapts smoothly to the new system dynamics. These results highlight the ability
of entropy-based awareness to enhance robustness against both disturbances and modeling
uncertainties.

The quantitative performance metrics summarized in Table 1 support the qualitative
observations derived from the simulation figures. Although the rise time of the entropy-aware
PID controller is slightly higher, this is compensated by a significantly shorter settling time, a
substantial reduction in maximum overshoot, and an order-of-magnitude improvement in
steady-state error. Additionally, the reduced variance of the control signal confirms smoother
actuation and improved efficiency.

Comparison with Fuzzy-PID Controller

To further evaluate the effectiveness of the proposed entropy-aware PID controller, a
comparison with a Fuzzy-PID controller is conducted. The Fuzzy-PID controller adjusts the
PID gains based on fuzzy inference rules using the tracking error and its derivative as linguistic
variables.

All controllers are tested under identical simulation conditions, including the same nonlinear
plant, reference signal, disturbance profile, noise level, and actuator constraints. This ensures
a fair and meaningful comparison of control performance.

Finally, the internal behavior of the entropy-aware mechanism demonstrates that adaptation is
achieved in a controlled and stable manner. The entropy indicator converges to a low steady
value after the transient phase, and the scheduled PID gains remain smooth without aggressive
or discontinuous variations. This confirms that the proposed approach enhances adaptability
while preserving the simplicity and reliability of PID control.

Overall, the discussion confirms that incorporating entropy-based signal conditioning into a
PID control framework provides a meaningful and practical improvement over conventional
PID control, particularly in noisy and uncertain environments.

Conclusion

his study presented an entropy-aware PID control strategy designed to enhance the
performance of conventional PID control in the presence of measurement noise, external
disturbances, and plant parameter uncertainties. The proposed approach integrates entropy-
based signal conditioning within a standard PID feedback structure, enabling uncertainty
awareness without increasing controller complexity. [8], [13]
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Simulation results obtained from MATLAB demonstrate that the entropy-aware PID controller
achieves improved closed-loop performance compared to the standard PID controller. In
particular, the proposed controller significantly reduces settling time, maximum overshoot, and
steady-state error, while producing smoother and more bounded control signals. These
improvements are achieved consistently under setpoint variations, actuator saturation
constraints, external disturbances, and plant parameter changes.

The quantitative performance metrics further confirm that incorporating entropy awareness
leads to superior robustness and control efficiency. By regulating controller behavior according
to the level of uncertainty in the system, the entropy-aware PID controller avoids aggressive
control actions and maintains stable adaptation.

Overall, the results indicate that entropy-based awareness provides a practical and effective
enhancement to classical PID control. The proposed framework preserves the simplicity and
reliability of PID controllers while extending their applicability to noisy and uncertain control
environments, making it suitable for real-world engineering applications. [1], [6], [11]

It should be noted that the validation of the proposed approach is limited to simulation-based
analysis on a nonlinear benchmark system. Future work will focus on experimental
implementation and real-time validation.

Compared to rule-based fuzzy adaptation, the proposed entropy-guided strategy provides a
systematic and analytically bounded adaptation mechanism, which contributes to improved
robustness and stability.
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