Sectoral and Regional Greenhouse Gas Emissions from Libya (1990–2020)

Authors

  • Abdulsalam M. Agwaidar Department of Natural Resources, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University, Al Bayda', Libya. Author
  • Sana A. Alsanussi Department of Environmental Sciences, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University, Al Bayda', Libya Author
  • Adrees A. Adrees Department of Agricultural Economics, Agricultural and Animal Research Center, Al Bayda', Libya Author
  • Abdulmutalib H. Ali Department of Wildlife, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University, Al Bayda', Libya. Author

DOI:

https://doi.org/10.65419/albahit.v4i2.82

Keywords:

Greenhouse gas emissions, Libya, Carbon dioxide, Climate change, Renewable energy, Sustainable agriculture, Waste management

Abstract

Greenhouse gas emissions from human activities are the primary drivers of global warming, which in turn accelerates climate change. This study aims to analyze the evolution of greenhouse gas emissions in Libya from 1990 to 2020, focusing on sectoral distribution (energy, industry, waste, agriculture) and the contribution of major gases (CO₂, CH₄, N₂O). The results reveal that the energy sector is the dominant source of emissions, accounting for over 90% of the total, with carbon dioxide (97.63%) being the most prevalent gas. Annual growth rates of emissions in Libya were found to be lower than the regional and global averages, with a stabilization or slight decline in emissions during the last period (2011–2020) due to economic and political challenges. The study recommends adopting sustainable policies, including transitioning to renewable energy, improving fossil fuel efficiency, enhancing waste management, promoting sustainable agricultural practices, and establishing a national emissions monitoring system. Furthermore, it emphasizes the importance of regional and international cooperation to leverage global climate finance and initiatives.

References

Anwar, M.; Iftikhar, M.; Khush Bakhat, B.; Sohail, N.; Baqar, M.; Yasir, A.; Nizami, A. Sources of carbon dioxide and environmental issues. In Sustainable Agriculture Reviews 37: Carbon Sequestration Vol. 1 Introduction and Biochemical Methods; Springer: Cham, Switzerland, 2019; pp. 13–36.

Capron, M. E., Stewart, J. R., de Ramon N’Yeurt, A., Chambers, M. D., Kim, J. K., Yarish, C., ... & Hasan, M. A. (2020). Restoring pre-industrial CO2 levels while achieving sustainable development goals. Energies, 13(18), 4972.

Chen, J., Liu, Y., Pan, T., Ciais, P., Ma, T., Liu, Y., ... & Peñuelas, J. (2020). Global socioeconomic exposure of heat extremes under climate change. Journal of Cleaner Production, 277, 123275. https://doi.org/10.1016/j.jclepro.2020.123275

Fearnside, P.M. Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv. Biol. 2005, 19, 680–688.

Food and Agriculture Organization of the United Nations (FAO), FAOSTAT Greenhouse Gas Emissions database, 2024. Available at: https://www.fao.org/faostat/en/#data/GT

Food and Agriculture Organization of the United Nations (FAO). (2024). FAOSTAT Greenhouse Gas Emissions. https://www.fao.org/faostat/en/#data/GT

Giovanis, E., & Ozdamar, O. (2022). The impact of climate change on budget balances and debt in the Middle East and North Africa (MENA) region. Climatic Change, 172(3), 34. https://doi.org/10.1007/s10584-022-03345-8

Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE 2013, 8, e81648.

Hansen, J.E.; Sato, M.; Lacis, A.; Ruedy, R.; Tegen, I.; Matthews, E. Climate forcings in the industrial era. Proc. Natl. Acad. Sci. USA 1998, 95, 12753–12758.

Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809.

Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., ... & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), 071002. https://doi.org/10.1088/1748-9326/ab76db

Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., ... & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), 071002.

Jones, M. W., Peters, G. P., Gasser, T., Andrew, R. M., Schwingshackl, C., Gütschow, J., ... & Le Quéré, C. (2023). Vestin, P., Mölder, M., Kljun, N., Cai, Z., Hasan, A., Holst, J., ... & Lindroth, A. (2020). Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests, 11(9), 961.

Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531.

Lin, B., & Abudu, H. (2020). Can energy conservation and substitution mitigate CO2 emissions in electricity generation? Evidence from Middle East and North Africa. Journal of Environmental Management, 273, 111-120. https://doi.org/10.1016/j.jenvman.2020.111120

Lin, B., & Abudu, H. (2020). Can energy conservation and substitution mitigate CO2 emissions in electricity generation? Evidence from Middle East and North Africa. Journal of Environmental Management, 269, 110757.

Mehmood, T., Hassan, M. A., Li, X., Ashraf, A., Rehman, S., Bilal, M., ... & Shakoor, A. (2022). Mechanism behind sources and sinks of major anthropogenic greenhouse gases. In Climate change alleviation for sustainable progression (pp. 114-150). CRC Press.

Mignamissi, D., & Djeufack, A. (2022). Urbanization and CO2 emissions intensity in Africa. Journal of Environmental Planning and Management, 65(9), 1660-1684.

Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897.

Miniaoui, H. (2022). Climate Change in the Middle East and North Africa: Between the repercussions of a lived reality and opportunities for a brighter future. In The Palgrave Handbook of International Sustainable Development and Tourism (pp. 447-467). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-90717-3_23

Nakazawa, T. (2020). Current understanding of the global cycling of carbon dioxide, methane, and nitrous oxide. Proceedings of the Japan Academy, Series B, 96(9), 394-419.

Nisbet, E. G., Dlugokencky, E. J., Fisher, R. E., France, J. L., Lowry, D., Manning, M. R., & Warwick, N. J. (2021). Atmospheric methane and nitrous oxide: challenges along the path to Net Zero. Philosophical Transactions of the Royal Society A, *379*(2210), 20200457. https://doi.org/10.1098/rsta.2020.0457

Ntiamoah, E. B., Appiah-Otoo, I., Li, D., Twumasi, M. A., Yeboah, E. N., & Chandio, A. A. (2024). Estimating and mitigating greenhouse gas emissions from agriculture in West Africa: does threshold matter? Environment, Development and Sustainability, 26(4), 10623–10651. https://doi.org/10.1007/s10668-023-03456-7

Nunes, L. J. (2023). The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies. Environments, 10(4), 66.

Quadrelli, R.; Peterson, S. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 2007, 35, 5938–5952.

Rehman, A., Ma, H., Irfan, M., & Ahmad, M. (2020). Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 27, 28768–28779. https://doi.org/10.1007/s11356-020-09012-3

Salami, A. A., & Babatunde, O. R. (2024). Environmental Challenges, The Impacts of Climate Change in North Africa Region: A Review. Natural Resources Deterioration in MENA Region: Land Degradation, Soil Erosion, and Desertification, 281–294. https://doi.org/10.1007/s10668-023-03456-7

Salami, A. A., & Babatunde, O. R. (2024). Environmental Challenges, The Impacts of Climate Change in North Africa Region: A Review. In Natural Resources Deterioration in MENA Region: Land Degradation, Soil Erosion, and Desertification (pp. 281-294). Springer. https://doi.org/10.1007/978-3-031-45736-5_12

Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.

Suliman, A., Mahmoud, A., & Eid, M. (2024). Greenhouse gas emissions from North African countries. Journal of African and Nile Basin Countries Research and Studies, 8(1), 225–235. https://mbddn.journals.ekb.eg/

West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232.

Yusuf, A. M., Abubakar, A. B., & Mamman, S. O. (2020). Relationship between greenhouse gas emission, energy consumption, and economic growth: evidence from some selected oil-producing African countries. Environmental Science and Pollution Research, 27(13), 15815–15823. https://doi.org/10.1007/s11356-020-08123-0

Zittis, G., Hadjinicolaou, P., Almazroui, M., Bucchignani, E., Driouech, F., El Rhaz, K., ... & Lelieveld, J. (2021). Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa. npj Climate and Atmospheric Science, 4(1), 20. https://doi.org/10.1038/s41612-021-00178-7

سليمان. س., أبوسنينة، م. ح., & عمر، ص. م. (2024). البصمة الكربونية المباشرة للطالب بجامعة طرابلس. African Journal of Advanced Pure and Applied Sciences (AJAPAS), 3(4), 372-381. https://aaasjournals.com/index.php/ajapas/article/view/1036

Downloads

Published

2025-10-10

Issue

Section

Articles

How to Cite

Sectoral and Regional Greenhouse Gas Emissions from Libya (1990–2020) . (2025). Albahit Journal of Applied Sciences, 4(2), 49-65. https://doi.org/10.65419/albahit.v4i2.82